We have presented the distribution of the exponentiated expanded power function (EEPF) with four parameters, where this distribution was created by the exponentiated expanded method created by the scientist Gupta to expand the exponential distribution by adding a new shape parameter to the cumulative function of the distribution, resulting in a new distribution, and this method is characterized by obtaining a distribution that belongs for the exponential family. We also obtained a function of survival rate and failure rate for this distribution, where some mathematical properties were derived, then we used the method of maximum likelihood (ML) and method least squares developed (LSD) to estimate the parameters and because of the nonlinear relationship between the parameters, numerical algorithms were used to find the estimates of the two methods. They are Newton-Raphson (NR) and Nelder mead (NM) algorithms to improve the estimators, and a Monte Carlo simulation experiment was conducted to evaluate the performance of the two algorithms' estimates, and the average integrated error criterion (IMSE) was used to compare the survival function estimates and the failure rate. The results showed the efficiency of the maximum likelihood method estimates and least squares developed using the two algorithms (NR, NM) where their results were close, and this shows the new distribution efficiency (EEPF) for modeling survival data.
his analysis aims to establish Riemann-Liouville derivation andintegral operators regarding the recently suggested seven-parameter Mittag-Leffler function then investigates the corresponding special cases. In addition,certain notable results associated with those new operators have been dis-cussed
Background: Powerlifters and bodybuilders use anabolic androgenic steroids (AAS) especially – as many as 55 percent of elite powerlifters admitted using these agents. In contrast to numerous documented toxic and hormonal effects of AAS their impact on the structure and function of the left ventricular (LV) was not yet fully understood.
ABSTRACT
Critical buckling temperature of angle-ply laminated plate is developed using a higher-order displacement field. This displacement field used by Mantari et al based on a constant ‘‘m’’, which is determined to give results closest to the three dimensions elasticity (3-D) theory. Equations of motion based on higher-order theory angle ply plates are derived through Hamilton, s principle, and solved using Navier-type solution to obtain critical buckling temperature for simply supported laminated plates. Changing (α2/ α1) ratios, number of layers, aspect ratios, E1/E2 ratios for thick and thin plates and their effect on thermal
... Show MoreSurvival analysis is widely applied to data that described by the length of time until the occurrence of an event under interest such as death or other important events. The purpose of this paper is to use the dynamic methodology which provides a flexible method, especially in the analysis of discrete survival time, to estimate the effect of covariate variables through time in the survival analysis on dialysis patients with kidney failure until death occurs. Where the estimations process is completely based on the Bayes approach by using two estimation methods: the maximum A Posterior (MAP) involved with Iteratively Weighted Kalman Filter Smoothing (IWKFS) and in combination with the Expectation Maximization (EM) algorithm. While the other
... Show MoreIn this paper, a new seven-parameter Mittag-Leffler function of a single com-plex variable is proposed as a generalization of the standard Mittag-Leffler function, certain generalizations of Mittag-Leffler function, hypergeometric function and confluent hypergeometric function. Certain essential analytic properties are mainly discussed, such as radius of convergence, order, type, differentiation, Mellin-Barnes integral representation and Euler transform in the complex plane. Its relation to Fox-Wright function and H-function is also developed.
Iraq is highly dependent on international markets to provide food for its residents. As imported food prices are highly dependent on crude oil prices in global markets, any shock in oil prices will have an impact on food consumption in the country. As a result, it is essential to study the demand for imported food at every time period. To the best of our knowledge as researchers, as not even a single study is available in the literature, this paper is considered the first to study the demand for imported food groups in Iraq. Therefore, the main objective of this research is to estimate demand elasticities for several imported food categories in Iraq. This study uses an Almost Ideal Demand System model to analyze the demand for imported f
... Show MoreRecently, complementary perfect corona domination in graphs was introduced. A dominating set S of a graph G is said to be a complementary perfect corona dominating set (CPCD – set) if each vertex in is either a pendent vertex or a support vertex and has a perfect matching. The minimum cardinality of a complementary perfect corona dominating set is called the complementary perfect corona domination number and is denoted by . In this paper, our parameter hasbeen discussed for power graphs of path and cycle.
Traumatic spinal cord injury is a serious neurological disorder. Patients experience a plethora of symptoms that can be attributed to the nerve fiber tracts that are compromised. This includes limb weakness, sensory impairment, and truncal instability, as well as a variety of autonomic abnormalities. This article will discuss how machine learning classification can be used to characterize the initial impairment and subsequent recovery of electromyography signals in an non-human primate model of traumatic spinal cord injury. The ultimate objective is to identify potential treatments for traumatic spinal cord injury. This work focuses specifically on finding a suitable classifier that differentiates between two distinct experimental
... Show MoreIn this paper, three approximate methods namely the Bernoulli, the Bernstein, and the shifted Legendre polynomials operational matrices are presented to solve two important nonlinear ordinary differential equations that appeared in engineering and applied science. The Riccati and the Darcy-Brinkman-Forchheimer moment equations are solved and the approximate solutions are obtained. The methods are summarized by converting the nonlinear differential equations into a nonlinear system of algebraic equations that is solved using Mathematica®12. The efficiency of these methods was investigated by calculating the root mean square error (RMS) and the maximum error remainder (𝑀𝐸𝑅n) and it was found that the accuracy increases with increasi
... Show More