The PET scans provide images that pinpoint the anatomic location of abnormal metabolic activity within the body. A radionuclide suitable for labeling a wide range of radiopharmaceuticals for positron emission tomography imaging is used also for local therapy of tumors. Among the possible methods for cyclotron production of radionuclide used in PET. We investigate the proton irradiation to produce the standard radionuclide (15O, 11C,1 3N, 18F) and some non-standard Radionuclide (76Br,124I,60Cu,66Ga,86Y and 89Zr). The total integral yield based on the main published and approved experimental results of excitation functions were calculated.
The present work is an attempt to develop design data for an Iraqi roof and wall constructions using the latest ASHRAE Radiant Time Series (RTS) cooling load calculation method. The work involves calculation of cooling load theoretically by introducing the design data for Iraq, and verifies the results experimentally by field measurements. Technical specifications of Iraqi construction materials are used to derive the conduction time factors that needed in RTS method calculations. Special software published by Oklahoma state university is used to extract the conduction factors according to the technical specifications of Iraqi construction materials. Good agreement between the average theoretical and measured cooli
... Show MoreShell model and Hartree-Fock calculations have been adopted to study the elastic and inelastic electron scattering form factors for 25Mg nucleus. The wave functions for this nucleus have been utilized from the shell model using USDA two-body effective interaction for this nucleus with the sd shell model space. On the other hand, the SkXcsb Skyrme parameterization has been used within the Hartree-Fock method to get the single-particle potential which is used to calculate the single-particle matrix elements. The calculated form factors have been compared with available experimental data.
Extended calculations for sputtering yield through bombed Iron – target by ( H,D ,T ,He ) ions plasma are accomplished .The calculations include changing the input parameters : the energy of ( H,D ,T ,He ) ions plasma, the hit target angle of Iron, change atomic mass of incident ion. The program TRIM is used to accomplish these calculations. The results show that sputtering yield is directly dependent on these parameters. It can change the incident angle of ( H,D ,T ,He ) ions and energy&n
... Show MoreThis work aims to study the exploding copper wire plasma parameters by optical emission spectroscopy. The emission spectra of the copper plasma have been recorded and analyzed The plasma electron temperature (Te), was calculated by Boltzmann plot, and the electron density (ne) calculated by using Stark broadening method for different copper wire diameter (0.18, 0.24 and 0.3 mm) and current
of 75A in distilled water. The hydrogen (Hα line) 656.279 nm was used to calculate the electron density for different wire diameters by Stark broadening. It was found that the electron density ne decrease from 22.4×1016 cm-3 to 17×1016 cm-3 with increasing wire diameter from 0.18 mm to 0.3 mm while the electron temperatures increase from 0.741 to
According to Chandra Survey Observatory Near-Asteroid Belt Comets, the solar wind's contact with the comet produces a variety of spectral characteristics. The study of X-ray spectra produced by charge exchange is presented here. The spectrum of a comet can reveal a lot about its composition. This study has concentrated on the elemental abundance in six different comets, including 17P/Holmes, C/1999T1, C/2013A1, 9p/Temple1, and 103p/Hartley2 (NEAT). Numerous aspects of the comet's dynamics allow it to behave in a unique manner as it gets closer to the Near-Asteroid Belt. These characteristics are being examined, and some studies are still ongoing. The computations allow us to observe, for instance, how the composition of
... Show MoreIn this study, mean free path and positron elastic-inelastic scattering are modeled for the elements hydrogen (H), carbon (C), nitrogen (N), oxygen (O), phosphorus (P), sulfur (S), chlorine (Cl), potassium (K) and iodine (I). Despite the enormous amounts of data required, the Monte Carlo (MC) method was applied, allowing for a very accurate simulation of positron interaction collisions in live cells. Here, the MC simulation of the interaction of positrons was reported with breast, liver, and thyroid at normal incidence angles, with energies ranging from 45 eV to 0.2 MeV. The model provides a straightforward analytic formula for the random sampling of positron scattering. ICRU44 was used to compile the elemental composition data. In this
... Show MoreThe right of the patient to know the medical risks surrounding the medical intervention is one of the most prominent rights based on the principle of "physical safety", which has undergone several stages of development until it reached the development of the patient's independence in making medical decision without relying on the doctor, The patient's prior informed consent is informed of his / her medical condition. We will study this development in accordance with the French March 4, 2002 legislation on the rights of patients in the health system, whether it was earlier and later. We will highlight the development of the patient's right to "know the medical risks surrounding medical intervention" The legislation and its comparison with th
... Show MoreIn this work, the fusion cross section , fusion barrier distribution and the probability of fusion have been investigated by coupled channel method for the systems 46Ti+64Ni, 40Ca+194Pt and 40Ar+148Sm with semi-classical and quantum mechanical approach using SCF and CCFULL Fortran codes respectively. The results for these calculations are compared with available experimental data. The results show that the quantum calculations agree better with experimental data, especially bellow the Coulomb barrier, for the studied systems while above this barrier, the two codes reproduce the data.