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ABSTRACT  

The PET scans provide images that pinpoint the anatomic location of abnormal metabolic activity within the 

body. A radionuclide suitable for labeling a wide range of radiopharmaceuticals for positron emission tomography imaging 

is used also for local therapy of tumors. Among the possible methods for cyclotron production of radionuclide used in 

PET. We investigate the proton irradiation to produce the standard radionuclide (15O, 11C,1 3N, 18F) and some non-standard 

Radionuclide (76Br,124I,60Cu,66Ga,86Y and 89Zr). The total integral yield based on the main published and approved 

experimental results of excitation functions were calculated. 
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INTRODUCTION 

Nuclear medicine is a branch of medical imaging that uses small amounts of radioactive material to diagnose and 

determine the severity of or treat a variety of diseases. Radioactivity plays an important role in medical science in terms of 

beneficial applications in both diagnosis and therapy. The former entails the introduction of a short-lived radionuclide 

attached to a suitable pharmaceutical into the patient and measurement of the accumulation and movement of activity from 

outside. This process is called “emission tomography” and involves the measurement of either a single low-energy γ-ray 

(i.e. Single Photon Emission Tomography (SPECT)), or coincidences between the two 511-keV photons formed in the 

annihilation of a positron (i.e. Positron Emission Tomography (PET)). A PET scan measures important body functions, 

such as blood flow, oxygen use, and sugar (glucose) metabolism, to help doctors evaluate how well organs and tissues are 

functioning.  

Principles 

Positron emission tomography (PET) is a gamma imaging technique that uses radiotracers that emit positrons.              

In PET the gamma rays used for imaging are produced when a positron meets an electron inside the patient’s body,                  

an encounter that annihilates both electron and positron and produces two gamma rays travelling in opposite directions.            

By mapping gamma rays that arrive at the same time the PET system is able to produce an image with high spatial 

resolution. Certain radioisotopes decay by positron emission, and such radioisotopes can be used as tracers. If injected into 

the body, they can be readily followed because the emission of the annihilation pairs of coincident gamma rays at 180° 

allows their source to be located along a line figure 1[1]. When a positron is emitted by a nucleus, it almost instantly finds 

an electron and the pair annihilates, converting all the mass energy of the two particles into two gamma rays. The two 

gamma ray photons possess momentum, and the conservation of momentum requires that they travel if opposite directions. 
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A simultaneous detection of gamma ray photons in two detectors places the source on a line between those detectors. 

Application  

The basis of PET imaging is the labeling of small, biologically important molecules, such as sugars, amino acids, 

nucleic acids, receptor-binding ligands, or even water and molecular oxygen, with positron-emitting radionuclides.              

When these positron-emitting tracers undergo radioactive decay, their positions can be detected by the PET scanner.                

By imaging the temporal distribution of these labeled compounds, we can create “physiologic maps” of the functions or 

processes relevant to the labeled molecules [2, 3]. However, it is able to provide true 3D information. This information is 

typically presented as cross-sectional slices through the patient, but can be freely reformatted or manipulated as required. 

PET has incomparable abilities to determine the metabolic activity of tissues but needs the assistance of higher-resolution, 

anatomic information that it cannot provide. [4, [5] 

•  We can resume the steps of diagnosis and prognosis as follows: 

•  location and extent of disease 

•  General or tumour-specific probes 

•  Size, stage, grade of disease 

•  Proliferation and/or hypoxia  

•  Real time "Therapy Evaluation" 

•  Customizing treatment could increase efficacy, decrease toxicity, and improve economics 

 

Figure 1: Annihilation Pairs of Coincident Gamma Rays at 180°  
       Allows their Source to be Located Along a Line[1] 

METHODS  

The feasibility of the production of PET radionuclides via various nuclear reactions was investigated.                  

PET Radionuclides production by the reactions of proton standard PET Radionuclide are shows in table 1, we calculate the 

excitation functions of the non-standard PET Radionuclides table 2 using the available data in the international libraries, 

according to SRIM code[6], the thick target integral yields were deduced using the calculated evaluated cross sections.           

A Matlab sub programs was used to solve the following yield equation[7,8]: 
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 Whereas,  (mb) is the average cross section at a specific energy (E); N is the number of target atoms/cm2, 

λ is the decay constant of the produced isotopes, P is the number of incident protons/sec for (1 µA) and t is the irradiation 

time (t= 1 h). The integral target yield is calculated by summing up the differential yields. 

RESULTS AND DISCUSSIONS 
60Cu Production by Proton Particles 

 60Ni (p,n)60 Cu reaction is beneficial energy range of proton energy producing 60 Cu from a 60Ni target is from 7 to 

12 MeV ,the maximum cross-section obtained according to A. V. Muminov et al [9] is obtained, the production yield of 
60Cu using SRIM code and equation(1) in the chosen energy range is 209.2 GBq/C as shown in figure 2. This reaction 

appears to be suitable for the purpose of copper-60 production by a low-energy cyclotron.  

86Y Production by Proton Particles 

The 86Sr (p, n)86Y reaction is an important proton incident particle for producing 86Y from enriched 86Sr targets. 

Several authors M. A. Avila-Rodriguez and, J. A. Nye et al [10-11] studied the energy range of proton energy producing 86Y 

from 2 to 11 MeV, the cross-section is obtained. The theoretical thick-target yield using SRIM using eq.(1) is found to be 

equal to 7.398 GB q/C as shown in figure 3. This reaction appears to be good for the purpose of 86Y production to use in 

PET[12]. 

89Zr Production by Proton Particles 

89Y (p, n)89Zr reaction is beneficial energy range of proton energy producing 89Zr from 89Y target is 7 to 30 MeV 

,the cross-section obtained according to V. N. Levkovskij [13], H. M. Omara et al[14], G. F. Steyn et al[15], B. Satheesh et al[16] 

and Zhao Wenrong et al[17] is obtained the production yield of 89Zr using SRIM code was obtained using eq.(1) in the 

chosen energy range and found to be 3.0986 GBq/C as shown in figure 4. This reaction appears to be suitable for the 

purpose of 89Zr production by a low-energy cyclotron and cheap target to use in PET[18]. 

124I Production by Proton Particles 

Six cross section data sets were found in the literature for producing 124I from 124Te by using the p, n reaction, one 

data set by Acerbi et al[19] ,Kondo et al[20], Van Den Bosch et al[21], Scholten et al[22], Zweit et al[23]and Qaim et al[24]in the 

range 6 to 31 MeV. The obtained production yield of 124I in the chosen energy range is 13.56GBq/C. The yield of this 

reaction is shown in figure 5 and This reaction appears to be good for the purpose of Iodine-124 production [25].  

76Br Production by Proton Particles 

The 76Se (p, n) reaction is an important proton incident particle for producing 76Br. Data of four authors by V. N. 

Levkovskij [13] , Z. Kovacs et al[26] , H. E. Hassan et al[27] and R. J. Nickles [28] ,, were founded in the literature in the 

energy range from 6.5 to 29.5 MeV . It's found that this reaction produce 76Br with the maximum cross-section of 654mb 

occurred in 16.5MeV. The theoretical thick-target yield obtained using SRIM and equation (1) was found to be equal to 

15.3662 GBq/C as shown in figure 6. This reaction appears to be very good for the purpose of 76Br production and to use in 

PET[29] . 
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CONCLUSIONS 

The production of non-standard Radionuclide to be used in PET can be obtained using different isotopes. Table 

(1) shows some isotopes known as standard PET radionuclides. Table 2 shows some of non- standard PET radionuclides 

with there nuclear characteristics. Different nuclear reactions can produce 60Cu but for low proton energies, the reaction 
60Ni(p, n) gives the largest yield (209.2 GBq/C) and this yield is very suitable for the use in PET.  

The 86Sr (p, n) reaction play an important role in 86Y production, for low proton energy the yield of is about 7.398 

GBq/C and very appropriate to be use in PET[30].  

The 89Y (p, n) reaction appears to be suitable for the purpose of 89Zr production by a low-energy cyclotron it’s a 

cheap target and very useful to be use in PET[18]. 

The 124Te(p, n) reaction produce 124I in the chosen energy range and give a yield of 13.56GBq/C , This reaction 

appears to be good for the purpose of Iodine-124 production and can be use in PET. It can be preferably used as a 

substitute for iodine 131 and iodine-125 [25, 31]. 

Table 1: Characteristics of Standard PET Radionuclides 

Isotope Half-life  
Max. ᵝ+ 

Energy(Kev) 
11C 20min 386 
15O 2min 735 
18F 110min 250 
64Cu 12.7h 278 
68Ga 1.1h 830 

 
Table 2: Characteristics of Non-standard PET Radionuclides 

 

 

 

Figure 2: Yield of Reaction 60Ni (p,n)60 Cu 
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Figure 3: Yield of Reaction 86 Sr(p, n)86Y 

 

Figure 4: Yield of Reaction 89Y (p,n)89Zr 

 

Figure 5: Yield of Reaction 124 Te (p, n) 124I 

 

Figure 6: Yield of Reaction 76 Se(p, n)76Br  
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