In this paper, our aim is to study variational formulation and solutions of 2-dimensional integrodifferential equations of fractional order. We will give a summery of representation to the variational formulation of linear nonhomogenous 2-dimensional Volterra integro-differential equations of the second kind with fractional order. An example will be discussed and solved by using the MathCAD software package when it is needed.
Most heuristic search method's performances are dependent on parameter choices. These parameter settings govern how new candidate solutions are generated and then applied by the algorithm. They essentially play a key role in determining the quality of the solution obtained and the efficiency of the search. Their fine-tuning techniques are still an on-going research area. Differential Evolution (DE) algorithm is a very powerful optimization method and has become popular in many fields. Based on the prolonged research work on DE, it is now arguably one of the most outstanding stochastic optimization algorithms for real-parameter optimization. One reason for its popularity is its widely appreciated property of having only a small number of par
... Show MoreAcne scars are one of the most common problems following acne vulgaris. Despite the extensive list of available treatment modalities, their effectiveness depends upon the nature of the scar. Ablative lasers had been used to treat acne scars; one of them is the fractional CO2 laser. The aim of this study is to evaluate the outcome of fractional CO2 laser in the treatment of acne scars. Methods: Since January 2010 to June 2013, using 10600 nm fractional CO2 laser beams, the acne scar of 400 patients, 188 males and 212 females, mean age of 34 years, have been treated and classified according to severity into four grades following Goodman and Baron classification. Each patient underwent 3-5 sessions once monthly. The mean laser exposure time
... Show MoreIn this paper, the delay integral equations in population growth will be described,discussed , studied and transfered this model to integro-differential equation. At last,we will solve this problem by using variational approach.
Fractional Er: YAG laser resurfacing is increasingly used for treating rhytides and photo aged skin because of its favorable benefit‐risk ratio. The multi-stacking and variable pulse width technology opened a wide horizon of rejuvenation treatments using this type of laser. To evaluate the efficacy and safety of the use of fractional 2940 nm Er: YAG laser in facial skin rejuvenation. Twelve female patients with mean age 48.3 years and multiple degrees of aging signs and solar skin damages, were treated with 2 sessions, one month apart by fractional Er: YAG laser. Each session consisted of 2 steps, the first step employed the use of the multi stack ablative fractional mode and the fractional long pulsed non-ablative mode settings were u
... Show MoreThe study of cohomology groups is one of the most intensive and exciting researches that arises from algebraic topology. Particularly, the dimension of cohomology groups is a highly useful invariant which plays a rigorous role in the geometric classification of associative algebras. This work focuses on the applications of low dimensional cohomology groups. In this regards, the cohomology groups of degree zero and degree one of nilpotent associative algebras in dimension four are described in matrix form.
This paper deals with founding an estimation of best approximation of unbounded functions which satisfied weighted Lipschitz condition with respect to the convex polynomials by means of weighted moduli of smoothness of fractional order , ( , ) p f t . In addition we prove some properties of weighted moduli of smoothness of fractional order.
The method of operational matrices based on different types of polynomials such as Bernstein, shifted Legendre and Bernoulli polynomials will be presented and implemented to solve the nonlinear Blasius equations approximately. The nonlinear differential equation will be converted into a system of nonlinear algebraic equations that can be solved using Mathematica®12. The efficiency of these methods has been studied by calculating the maximum error remainder ( ), and it was found that their efficiency increases as the polynomial degree (n) increases, since the errors decrease. Moreover, the approximate solutions obtained by the proposed methods are compared with the solution of the 4th order Runge-Kutta method (RK4), which gives very
... Show MoreThe aim of this paper is to propose an efficient three steps iterative method for finding the zeros of the nonlinear equation f(x)=0 . Starting with a suitably chosen , the method generates a sequence of iterates converging to the root. The convergence analysis is proved to establish its five order of convergence. Several examples are given to illustrate the efficiency of the proposed new method and its comparison with other methods.
In this paper, we propose a method using continuous wavelets to study the multivariate fractional Brownian motion through the deviations of the transformed random process to find an efficient estimate of Hurst exponent using eigenvalue regression of the covariance matrix. The results of simulations experiments shown that the performance of the proposed estimator was efficient in bias but the variance get increase as signal change from short to long memory the MASE increase relatively. The estimation process was made by calculating the eigenvalues for the variance-covariance matrix of Meyer’s continuous wavelet details coefficients.