Preferred Language
Articles
/
JhYQH4oBVTCNdQwCjZF7
Solution of two-dimensional fractional order volterra integro-differential equations
...Show More Authors

In this paper, our aim is to study variational formulation and solutions of 2-dimensional integrodifferential equations of fractional order. We will give a summery of representation to the variational formulation of linear nonhomogenous 2-dimensional Volterra integro-differential equations of the second kind with fractional order. An example will be discussed and solved by using the MathCAD software package when it is needed.

View Publication Preview PDF
Quick Preview PDF
Publication Date
Mon Jan 20 2020
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
The Continuous Classical Optimal Control Problems for Triple Elliptic Partial Differential Equations
...Show More Authors

In this paper the Galerkin method is used to prove the existence and uniqueness theorem for the solution of the state vector of the triple linear elliptic partial differential equations for fixed continuous classical optimal control vector. Also, the existence theorem of a continuous classical optimal control vector related with the triple linear equations of elliptic types is proved. The existence of a unique solution for the triple adjoint equations related with the considered triple of the state equations is studied. The Fréchet derivative of the cost function is derived. Finally the theorem of necessary conditions for optimality of the considered problem is proved.

View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Fri Apr 01 2022
Journal Name
Baghdad Science Journal
Numerical Solutions of Two-Dimensional Vorticity Transport Equation Using Crank-Nicolson Method
...Show More Authors

This paper is concerned with the numerical solutions of the vorticity transport equation (VTE) in two-dimensional space with homogenous Dirichlet boundary conditions. Namely, for this problem, the Crank-Nicolson finite difference equation is derived.  In addition, the consistency and stability of the Crank-Nicolson method are studied. Moreover, a numerical experiment is considered to study the convergence of the Crank-Nicolson scheme and to visualize the discrete graphs for the vorticity and stream functions. The analytical result shows that the proposed scheme is consistent, whereas the numerical results show that the solutions are stable with small space-steps and at any time levels.

View Publication Preview PDF
Scopus (4)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Mon Apr 19 2010
Journal Name
Computer And Information Science
Quantitative Detection of Left Ventricular Wall Motion Abnormality by Two-Dimensional Echocardiography
...Show More Authors

Echocardiography is a widely used imaging technique to examine various cardiac functions, especially to detect the left ventricular wall motion abnormality. Unfortunately the quality of echocardiograph images and complexities of underlying motion captured, makes it difficult for an in-experienced physicians/ radiologist to describe the motion abnormalities in a crisp way, leading to possible errors in diagnosis. In this study, we present a method to analyze left ventricular wall motion, by using optical flow to estimate velocities of the left ventricular wall segments and find relation between these segments motion. The proposed method will be able to present real clinical help to verify the left ventricular wall motion diagnosis.

View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Fri Feb 28 2020
Journal Name
Iraqi Journal Of Science
Numerical Solution for Two-Sided Stefan Problem
...Show More Authors

     In this paper, we consider a two-phase Stefan problem in one-dimensional space for parabolic heat equation with non-homogenous Dirichlet boundary condition. This problem contains a free boundary depending on time. Therefore, the shape of the problem is changing with time. To overcome this issue, we use a simple transformation to convert the free-boundary problem to a fixed-boundary problem. However, this transformation yields a complex and nonlinear parabolic equation. The resulting equation is solved by the finite difference method with Crank-Nicolson scheme which is unconditionally stable and second-order of accuracy in space and time. The numerical results show an excellent accuracy and stable solutions for tw

... Show More
View Publication Preview PDF
Scopus (8)
Crossref (1)
Scopus Crossref
Publication Date
Sun Aug 01 2021
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Weighted Residual Method for the System of Nonlinear Volterra Integral Equations of the Second Kind Using an Exponential Function
...Show More Authors

The numerical resolve nonlinear system of Volterra integral equation of the second kind (NLSVIEK2) has been considered. The exponential function is used as the base function of the collocation method to approximate the resolve of the problem. Arithmetic epitome are performed which have already been solved by weighted residual manner,  Taylor manner and block- by- block(2, 3, 5).

View Publication Preview PDF
Crossref
Publication Date
Fri Jan 01 2016
Journal Name
International Journal Of Advanced Research
ON STABILITY AND THE BOUNDEDNESS OF THE ZERO SOLUTION OF FIFTH ORDER
...Show More Authors

This paper is illustrates the sufficient conditions of the uniformly asymptotically stable and the bounded of the zero solution of fifth order nonlinear differential equation with a variable delay τ(t)

Publication Date
Sat Jan 01 2022
Journal Name
International Journal Of Differential Equations
Dynamical Behaviours of Stage-Structured Fractional-Order Prey-Predator Model with Crowley-Martin Functional Response
...Show More Authors

In this paper, the dynamic behaviour of the stage-structure prey-predator fractional-order derivative system is considered and discussed. In this model, the Crowley–Martin functional response describes the interaction between mature preys with a predator.  e existence, uniqueness, non-negativity, and the boundedness of solutions are proved. All possible equilibrium points of this system are investigated.  e su‰cient conditions of local stability of equilibrium points for the considered system are determined. Finally, numerical simulation results are carried out to con‹rm the theoretical results.

Preview PDF
Scopus (2)
Scopus
Publication Date
Sun Apr 30 2017
Journal Name
Ibn Al-haitham Jour. For Pure & Appl. Sci.
Solution of High Order Ordinary Boundary Value Problems Using Semi-Analytic Technique
...Show More Authors

The aim of this paper is to present a method for solving high order ordinary differential equations with two point's boundary condition, we propose semi-analytic technique using two-point oscillatory interpolation to construct polynomial solution. The original problem is concerned using two-point oscillatory interpolation with the fit equal numbers of derivatives at the end points of an interval [0 , 1] . Also, many examples are presented to demonstrate the applicability, accuracy and efficiency of the method by comparing with conventional methods.

View Publication
Publication Date
Sun Apr 30 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Solution of High Order Ordinary Boundary Value Problems Using Semi-Analytic Technique
...Show More Authors

  The aim of this paper is to present a method for solving high order ordinary differential equations with two point's boundary condition, we propose semi-analytic technique using two-point oscillatory interpolation to construct polynomial solution. The original problem is concerned using two-point oscillatory interpolation with the fit equal numbers of derivatives at the end points of an interval [0 , 1] .  Also, many examples are presented to demonstrate the applicability, accuracy and efficiency of the method by comparing with conventional methods.

View Publication
Publication Date
Fri Feb 08 2019
Journal Name
Iraqi Journal Of Laser
One dimensional Finite Element Solution of Moving Boundaries in Far IR Laser Tissue Ablation
...Show More Authors

In this work, the finite element analysis of moving coordinates has been used to study the thermal behavior of the tissue subjected to both continuous wave and pulsed CO2 laser. The results are compared with previously published data, and a good agreement has been found, which verifies the implemented theory. Some conclusions are obtained; As pulse width decreases, or repetition rate increases, or fluence increases then the char depth is decreased which can be explained by an increase in induced energy or its rate, which increases the ablation rate, leading to a decrease in char depth. Thus: An increase in the fluence or decreasing pulse width or increasing repetition rate will increase ablation rate, which will increase the depth of cut

... Show More
View Publication Preview PDF