The aim of this paper is to look at fibrewise slightly issuances of the more important separation axioms of ordinary topology namely fibrewise said to be fibrewise slightly T0 spaces, fibrewise slightly T1spaces, fibrewise slightly R0 spaces, fibrewise slightly T2 spaces, fibrewise slightly functionally T2 spaces, fibrewise slightly regular spaces, fibrewise slightly completely regular spaces, fibrewise slightly normal spaces. In addition, we announce and confirm many proposals related to these concepts.
In this paper we introduce a new type of functions called the generalized regular
continuous functions .These functions are weaker than regular continuous functions and
stronger than regular generalized continuous functions. Also, we study some
characterizations and basic properties of generalized regular continuous functions .Moreover
we study another types of generalized regular continuous functions and study the relation
among them
In this paper, we will give another class of normal operator which is (K-N)*
quasi-n-normal operator in Hilbert space, and give some properties of this concept
as well as discussion the relation between this class with another class of normal
operators.
In this paper, a new class of sets, namely ï¡- semi-regular closed sets is introduced and studied for topological spaces. This class properly contains the class of semi-ï¡-closed sets and is property contained in the class of pre-semi-closed sets. Also, we introduce and study ï¡srcontinuity and ï¡sr-irresoleteness. We showed that ï¡sr-continuity falls strictly in between semi-ï¡- continuity and pre-semi-continuity.
In the present paper, we have introduced some new definitions On D- compact topological group and D-L. compact topological group for the compactification in topological spaces and groups, we obtain some results related to D- compact topological group and D-L. compact topological group.
In the present paper, we have introduced some new definitions On D- compact topological group and D-L. compact topological group for the compactification in topological spaces and groups, we obtain some results related to D- compact topological group and D-L. compact topological group.
In this paper, we introduce a new type of Drazin invertible operator on Hilbert spaces, which is called D-operator. Then, some properties of the class of D-operators are studied. We prove that the D-operator preserves the scalar product, the unitary equivalent property, the product and sum of two D-operators are not D-operator in general but the direct product and tenser product is also D-operator.
Let be a ring with identity and let be a left R-module. If is a proper submodule of and , is called --semi regular element in , If there exists a decoposition such that is projective submodule of and . The aim of this paper is to introduce properties of F-J-semi regular module. In particular, its characterizations are given. Furthermore, we introduce the concepts of Jacobson hollow semi regular module and --semiregular module. Finally, many results of Jacobson hollow semi regular module and --semiregular module are presented.
There are two (non-equivalent) generalizations of Von Neuman regular rings to modules; one in the sense of Zelmanowize which is elementwise generalization, and the other in the sense of Fieldhowse. In this work, we introduced and studied the approximately regular modules, as well as many properties and characterizations are considered, also we study the relation between them by using approximately pointwise-projective modules.
The present study introduces the concept of J-pure submodules as a generalization of pure submodules. We study some of its basic properties and by using this concept we define the class of J-regular modules, where an R-module M is called J-regular module if every submodule of M is J-pure submodule. Many results about this concept are proved