Preferred Language
Articles
/
IBjvG5YBVTCNdQwC6oKb
Breast cancer survival rate prediction using multimodal deep learning with multigenetic features
...Show More Authors

Breast cancer is a heterogeneous disease characterized by molecular complexity. This research utilized three genetic expression profiles—gene expression, deoxyribonucleic acid (DNA) methylation, and micro ribonucleic acid (miRNA) expression—to deepen the understanding of breast cancer biology and contribute to the development of a reliable survival rate prediction model. During the preprocessing phase, principal component analysis (PCA) was applied to reduce the dimensionality of each dataset before computing consensus features across the three omics datasets. By integrating these datasets with the consensus features, the model's ability to uncover deep connections within the data was significantly improved. The proposed multimodal deep learning multigenetic features (MDL-MG) architecture incorporates a custom attention mechanism (CAM), bidirectional long short-term memory (BLSTM), and convolutional neural networks (CNNs). Additionally, the model was optimized to handle contrastive loss by extracting distinguishing features using a Siamese network (SN) architecture with a Euclidean distance metric. To assess the effectiveness of this approach, various evaluation metrics were applied to the cancer genome atlas (TCGA-BREAST) dataset. The model achieved 100% accuracy and demonstrated improvements in recall (16.2%), area under the curve (AUC) (29.3%), and precision (10.4%) while reducing complexity. These results highlight the model's efficacy in accurately predicting cancer survival rates.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sat Dec 02 2017
Journal Name
International Food Research Journal
Extraction and purification of cytotoxic compounds from Premna serratifolia L.(bebuas) for human breast cancer treatment.
...Show More Authors

Publication Date
Fri Jan 01 2021
Journal Name
International Journal Of Agricultural And Statistical Sciences
COMPARISON OF SOME NONPARAMETRIC METHODS TO DETERMINE THE NUMBER OF RADIATION DOSES FOR BREAST CANCER PATIENTS
...Show More Authors

Radiation therapy plays an important role in improving breast cancer cases, in order to obtain an appropriateestimate of radiation doses number given to the patient after tumor removal; some methods of nonparametric regression werecompared. The Kernel method was used by Nadaraya-Watson estimator to find the estimation regression function forsmoothing data based on the smoothing parameter h according to the Normal scale method (NSM), Least Squared CrossValidation method (LSCV) and Golden Rate Method (GRM). These methods were compared by simulation for samples ofthree sizes, the method (NSM) proved to be the best according to average of Mean Squares Error criterion and the method(LSCV) proved to be the best according to Average of Mean Absolu

... Show More
Scopus
Publication Date
Tue Jan 01 2019
Journal Name
Indian Journal Of Public Health Research & Development
Loss of the Epigenetically Inactivated-X-Chromosome (Barr Body) a Potential Biomarker for Breast Cancer Development
...Show More Authors

View Publication
Scopus (4)
Crossref (2)
Scopus Crossref
Publication Date
Thu Jan 01 2015
Journal Name
International Journal Of Science And Research (ijsr
Interaction of Alpha Particles with Breast Tissue
...Show More Authors

As modern radiotherapy technology advances, radiation dose and dose distribution have improved significantly. As part of a natural evolution, there has recently been renewed interest in therapy, particularly in the use of heavy charged particles, because these types of radiation serve theoretical advantages in all biological and physical aspects. The interactions of alpha particle with matter were studied and the stopping powers of alpha particle with Breast Tissue were calculated by using Beth-Bloch equation, Zeigler's formula and SRIM software, also the Range and Liner Energy Transfer (LET) and Breast Thickness As well as Dose and Dose equivalent for this particle were calculated by using Mat lab language for (0.01-200) MeV alpha ene

... Show More
Publication Date
Wed Jun 10 2009
Journal Name
Iraqi Journal Of Laser
Simulation of passively Q-switched rate equation using saturable crystal Dy +2: CaF2 with ruby laser
...Show More Authors

The simulation of passively Q-switching is four non – linear first order differential equations. The optimization of passively Q-switching simulation was carried out using the constrained Rosenbrock technique. The maximization option in this technique was utilized to the fourth equation as an objective function; the parameters, γa, γc and β as were dealt with as decision variables. A FORTRAN program was written to determine the optimum values of the decision variables through the simulation of the four coupled equations, for ruby laser Q–switched by Dy +2: CaF2.For different Dy +2:CaF2 molecules number, the values of decision variables was predicted using our written program. The relaxation time of Dy +2: CaF2, used with ruby was

... Show More
View Publication Preview PDF
Publication Date
Sat Jan 02 2010
Journal Name
Journal Of Al-nahrain University
HIDDEN FEATURES DETECTION USING HISTOGRAM MODIFICATION IN MRI IMAGES
...Show More Authors

Magnetic Resonance Imaging (MRI) uses magnetization and radio waves, rather than x-rays to make very detailed, cross- sectional pictures of the brain. In this work we are going to explain some procedures belongs contrast and brightness improvement which is very important in the improvement the image quality such as the manipulation with the image histogram. Its has been explained in this worked the histogram shrink i.e. reducing the size of the gray level gives a dim low contrast picture is produced, where, the histogram stretching of the gray level was distributed on a wide scale but there is no increase in the number of pixels in the bright region. The histogram equalization has also been discuss together with its effects of the improveme

... Show More
Publication Date
Wed Nov 25 2015
Journal Name
Research Journal Of Applied Sciences, Engineering And Technology
Subject Independent Facial Emotion Classification Using Geometric Based Features
...Show More Authors

Accurate emotion categorization is an important and challenging task in computer vision and image processing fields. Facial emotion recognition system implies three important stages: Prep-processing and face area allocation, feature extraction and classification. In this study a new system based on geometric features (distances and angles) set derived from the basic facial components such as eyes, eyebrows and mouth using analytical geometry calculations. For classification stage feed forward neural network classifier is used. For evaluation purpose the Standard database "JAFFE" have been used as test material; it holds face samples for seven basic emotions. The results of conducted tests indicate that the use of suggested distances, angles

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Sun Dec 01 2019
Journal Name
Journal Of Economics And Administrative Sciences
Use Generalized Pareto Survival Models to Estimation Optimal Survival Time for Myocardial Infarction Patients
...Show More Authors

The survival analysis is one of the modern methods of analysis that is based on the fact that the dependent variable represents time until the event concerned in the study. There are many survival models that deal with the impact of explanatory factors on the likelihood of survival, including the models proposed by the world, David Cox, one of the most important and common models of survival, where it consists of two functions, one of which is a parametric function that does not depend on the survival time and the other a nonparametric function that depends on times of survival, which the Cox model is defined as a semi parametric model, The set of parametric models that depend on the time-to-event distribution parameters such as

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Sep 30 2013
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Permeability Prediction in Carbonate Reservoir Rock Using FZI
...Show More Authors

Knowledge of permeability, which is the ability of rocks to transmit the fluid, is important for understanding the flow mechanisms in oil and gas reservoirs.
Permeability is best measured in the laboratory on cored rock taken from the reservoir. Coring is expensive and time-consuming in comparison to the electronic survey techniques most commonly used to gain information about permeability.
Yamama formation was chosen, to predict the permeability by using FZI method. Yamama Formation is the main lower cretaceous carbonate reservoir in southern of Iraq. This formation is made up mainly of limestone. Yamama formation was deposited on a gradually rising basin floor. The digenesis of Yamama sediments is very important due to its direct

... Show More
View Publication Preview PDF
Publication Date
Mon Dec 10 2018
Journal Name
Day 1 Mon, December 10, 2018
Wellbore Trajectory Optimization Using Rate of Penetration and Wellbore Stability Analysis
...Show More Authors

Drilling deviated wells is a frequently used approach in the oil and gas industry to increase the productivity of wells in reservoirs with a small thickness. Drilling these wells has been a challenge due to the low rate of penetration (ROP) and severe wellbore instability issues. The objective of this research is to reach a better drilling performance by reducing drilling time and increasing wellbore stability.

In this work, the first step was to develop a model that predicts the ROP for deviated wells by applying Artificial Neural Networks (ANNs). In the modeling, azimuth (AZI) and inclination (INC) of the wellbore trajectory, controllable drilling parameters, unconfined compressive strength (UCS), formation

... Show More
View Publication
Crossref (12)
Crossref