Breast cancer is a heterogeneous disease characterized by molecular complexity. This research utilized three genetic expression profiles—gene expression, deoxyribonucleic acid (DNA) methylation, and micro ribonucleic acid (miRNA) expression—to deepen the understanding of breast cancer biology and contribute to the development of a reliable survival rate prediction model. During the preprocessing phase, principal component analysis (PCA) was applied to reduce the dimensionality of each dataset before computing consensus features across the three omics datasets. By integrating these datasets with the consensus features, the model's ability to uncover deep connections within the data was significantly improved. The proposed multimodal deep learning multigenetic features (MDL-MG) architecture incorporates a custom attention mechanism (CAM), bidirectional long short-term memory (BLSTM), and convolutional neural networks (CNNs). Additionally, the model was optimized to handle contrastive loss by extracting distinguishing features using a Siamese network (SN) architecture with a Euclidean distance metric. To assess the effectiveness of this approach, various evaluation metrics were applied to the cancer genome atlas (TCGA-BREAST) dataset. The model achieved 100% accuracy and demonstrated improvements in recall (16.2%), area under the curve (AUC) (29.3%), and precision (10.4%) while reducing complexity. These results highlight the model's efficacy in accurately predicting cancer survival rates.
The emergence of SARS-CoV-2, the virus responsible for the COVID-19 pandemic, has resulted in a global health crisis leading to widespread illness, death, and daily life disruptions. Having a vaccine for COVID-19 is crucial to controlling the spread of the virus which will help to end the pandemic and restore normalcy to society. Messenger RNA (mRNA) molecules vaccine has led the way as the swift vaccine candidate for COVID-19, but it faces key probable restrictions including spontaneous deterioration. To address mRNA degradation issues, Stanford University academics and the Eterna community sponsored a Kaggle competition.This study aims to build a deep learning (DL) model which will predict deterioration rates at each base of the mRNA
... Show Moreالخلفية: إن سمية الدواء والآثار الجانبية للعلاج الكيميائي تؤثر سلبا على مرضى سرطان الثدي. الأهداف: لتقييم فعالية التدخلات الصيدلانية في تحسين معرفة مرضى سرطان الثدي ومواقفهم وممارساتهم فيما يتعلق بالعلاج الكيميائي لسرطان الثدي.
In recent years, Bitcoin has become the most widely used blockchain platform in business and finance. The goal of this work is to find a viable prediction model that incorporates and perhaps improves on a combination of available models. Among the techniques utilized in this paper are exponential smoothing, ARIMA, artificial neural networks (ANNs) models, and prediction combination models. The study's most obvious discovery is that artificial intelligence models improve the results of compound prediction models. The second key discovery was that a strong combination forecasting model that responds to the multiple fluctuations that occur in the bitcoin time series and Error improvement should be used. Based on the results, the prediction acc
... Show More. In recent years, Bitcoin has become the most widely used blockchain platform in business and finance. The goal of this work is to find a viable prediction model that incorporates and perhaps improves on a combination of available models. Among the techniques utilized in this paper are exponential smoothing, ARIMA, artificial neural networks (ANNs) models, and prediction combination models. The study's most obvious discovery is that artificial intelligence models improve the results of compound prediction models. The second key discovery was that a strong combination forecasting model that responds to the multiple fluctuations that occur in the bitcoin time series and Error improvement should be used. Based on the results, the prediction a
... Show MoreOver the years, the prediction of penetration rate (ROP) has played a key rule for drilling engineers due it is effect on the optimization of various parameters that related to substantial cost saving. Many researchers have continually worked to optimize penetration rate. A major issue with most published studies is that there is no simple model currently available to guarantee the ROP prediction.
The main objective of this study is to further improve ROP prediction using two predictive methods, multiple regression analysis (MRA) and artificial neural networks (ANNs). A field case in SE Iraq was conducted to predict the ROP from a large number of parame
The proposal of nonlinear models is one of the most important methods in time series analysis, which has a wide potential for predicting various phenomena, including physical, engineering and economic, by studying the characteristics of random disturbances in order to arrive at accurate predictions.
In this, the autoregressive model with exogenous variable was built using a threshold as the first method, using two proposed approaches that were used to determine the best cutting point of [the predictability forward (forecasting) and the predictability in the time series (prediction), through the threshold point indicator]. B-J seasonal models are used as a second method based on the principle of the two proposed approaches in dete
... Show MoreNon Uniform Illumination biological image often leads to diminish structures and inhomogeneous intensities of the image. Algorithm has been proposed using Morphological Operations different types of structuring elements including (dick, line, square and ball) with the same parameters of (15).To correct the non-uniform illumination and enhancement biological images, the non-uniform background illumination have been removed from image, using (contrast adjustment, histogram equalization and adaptive histogram equalization). The used basic approach to extract the statistical features values from gray level of co-occurrence matrices (GLCM) can show the typical values for features content of biological images that can be in form of shape or sp
... Show MoreThe advent of UNHCR reports has given rise to the uniqueness of its distinctive way of image representation and using semiotic features. So, there are a lot of researches that have investigated UNHCR reports, but no research has examined images in UNHCR reports of displaced Iraqis from a multimodal discourse perspective. The present study suggests that the images are, like language, rich in many potential meanings and are governed by clearly visual grammar structures that can be employed to decode these multiple meanings. Seven images are examined in terms of their representational, interactional and compositional aspects. Depending on the results, this study concludes that the findings support the visual grammar theory and highlight the va
... Show MoreBackground: This study aimed to evaluate the outcome of long-term results of dacryocystorhinostomy (DCR) techniques in specialized eye care center in Iraq.
Subjects and Method: This is a prospective study of 650 patients from July 2014 to July 2019 with nasolacrimal duct obstruction in Ibn Al Haitham Eye Teaching Hospital. A preoperative questionnaire was done, then one month, three months, six months and one year postoperatively. The success of surgery defined as follow; Absence of epiphora completely, Resolve of dacryocele or mucocele or any new attack of daryocystitis, Appearance of fluorescein dye from nose in fluorescein disappearance test, Successful irriga
... Show More