Breast cancer is a heterogeneous disease characterized by molecular complexity. This research utilized three genetic expression profiles—gene expression, deoxyribonucleic acid (DNA) methylation, and micro ribonucleic acid (miRNA) expression—to deepen the understanding of breast cancer biology and contribute to the development of a reliable survival rate prediction model. During the preprocessing phase, principal component analysis (PCA) was applied to reduce the dimensionality of each dataset before computing consensus features across the three omics datasets. By integrating these datasets with the consensus features, the model's ability to uncover deep connections within the data was significantly improved. The proposed multimodal deep learning multigenetic features (MDL-MG) architecture incorporates a custom attention mechanism (CAM), bidirectional long short-term memory (BLSTM), and convolutional neural networks (CNNs). Additionally, the model was optimized to handle contrastive loss by extracting distinguishing features using a Siamese network (SN) architecture with a Euclidean distance metric. To assess the effectiveness of this approach, various evaluation metrics were applied to the cancer genome atlas (TCGA-BREAST) dataset. The model achieved 100% accuracy and demonstrated improvements in recall (16.2%), area under the curve (AUC) (29.3%), and precision (10.4%) while reducing complexity. These results highlight the model's efficacy in accurately predicting cancer survival rates.
Breast cancer is the second most common cancer in women world. Multiple Cytokines appear to have a dominant role in human breast cancer formation. Estimation of the in situ expression of IL-6 and IL-1β in breast cancer patients. A sixty patients with breast cancer BC were divided into two clinical subgroups, (30) with malignant breast cancer MBC and (30) with benign breast tumor as a control group according to histological examination. In situ hybridization technique used for detection of IL-6 and IL-1β mRNA sequence in two groups. The results showed that percentages of mRNA expression of IL-6 and IL-1β were in (≥ 11-50%) for malignant breast cancer. This research also investigated that (73.3%) of beni
... Show MoreBackground: The study's objective was to estimate the effects of radiation on testosterone-related hormones and blood components in prostate cancer patients. N Materials and Method: This study aims to investigate the effects of radiation on 20 male prostate cancer patients at the Middle Euphrates Oncology Centre. Blood samples were collected before and after radiation treatment, with a total dose of 60- 70 Gy, The blood parameters were analyzed. The hospital laboratory conducted the blood analysis using an analyzer (Diagon D-cell5D) to test blood components before and after radiation. Hormonal examinations included testosterone levels, using the VIDASR 30 for Multiparametric immunoassay system Results: The study assessed the socio-demogra
... Show More<p>Currently, breast cancer is one of the most common cancers and a main reason of women death worldwide particularly in<strong> </strong>developing countries such as Iraq. our work aims to predict the type of tumor whether benign or malignant through models that were built using logistic regression and neural networks and we hope it will help doctors in detecting the type of breast tumor. Four models were set using binary logistic regression and two different types of artificial neural networks namely multilayer perceptron MLP and radial basis function RBF. Evaluation of validated and trained models was done using several performance metrics like accuracy, sensitivity, specificity, and AUC (area under receiver ope
... Show MoreThis study was aimed to determine the mutations and single nucleotide polymorphisms (SNPs) in exon 3 and 7 of estrogen receptor beta (ESR2) gene in women with breast cancer from Iraq. Different samples (blood, fresh tissue with blood from same patient, and formalin fixed paraffin embedded, FFPE) were collected from women with breast cancer. Molecular analysis exon 3 and 7 in ESR2 has been studied by using PCR. It was found exon 3 and 7 in ESR2 were revealed as a single band with size 151 and 157 bp, respectively. There was no SNP in exon 3 has been identified. While three novel polymorphisms (ACT, AGG and GCA) were detected in exon 7, the type of those polymorphisms deletion for ACT and AGG while substitution polymorphism for GCA. From this
... Show MoreThis article presents the results of an experimental investigation of using carbon fiber–reinforced polymer sheets to enhance the behavior of reinforced concrete deep beams with large web openings in shear spans. A set of 18 specimens were fabricated and tested up to a failure to evaluate the structural performance in terms of cracking, deformation, and load-carrying capacity. All tested specimens were with 1500-mm length, 500-mm cross-sectional deep, and 150-mm wide. Parameters that studied were opening size, opening location, and the strengthening factor. Two deep beams were implemented as control specimens without opening and without strengthening. Eight deep beams were fabricated with openings but without strengthening, while
... Show MoreThis article presents the results of an experimental investigation of using carbon fiber–reinforced polymer sheets to enhance the behavior of reinforced concrete deep beams with large web openings in shear spans. A set of 18 specimens were fabricated and tested up to a failure to evaluate the structural performance in terms of cracking, deformation, and load-carrying capacity. All tested specimens were with 1500-mm length, 500-mm cross-sectional deep, and 150-mm wide. Parameters that studied were opening size, opening location, and the strengthening factor. Two deep beams were implemented as control specimens without opening and without strengthening. Eight deep beams were fabricated with openings but without strengthening, while
... Show MoreOver the years, the prediction of penetration rate (ROP) has played a key rule for drilling engineers due it is effect on the optimization of various parameters that related to substantial cost saving. Many researchers have continually worked to optimize penetration rate. A major issue with most published studies is that there is no simple model currently available to guarantee the ROP prediction.
The main objective of this study is to further improve ROP prediction using two predictive methods, multiple regression analysis (MRA) and artificial neural networks (ANNs). A field case in SE Iraq was conducted to predict the ROP from a large number of parame