Breast cancer is a heterogeneous disease characterized by molecular complexity. This research utilized three genetic expression profiles—gene expression, deoxyribonucleic acid (DNA) methylation, and micro ribonucleic acid (miRNA) expression—to deepen the understanding of breast cancer biology and contribute to the development of a reliable survival rate prediction model. During the preprocessing phase, principal component analysis (PCA) was applied to reduce the dimensionality of each dataset before computing consensus features across the three omics datasets. By integrating these datasets with the consensus features, the model's ability to uncover deep connections within the data was significantly improved. The proposed multimodal deep learning multigenetic features (MDL-MG) architecture incorporates a custom attention mechanism (CAM), bidirectional long short-term memory (BLSTM), and convolutional neural networks (CNNs). Additionally, the model was optimized to handle contrastive loss by extracting distinguishing features using a Siamese network (SN) architecture with a Euclidean distance metric. To assess the effectiveness of this approach, various evaluation metrics were applied to the cancer genome atlas (TCGA-BREAST) dataset. The model achieved 100% accuracy and demonstrated improvements in recall (16.2%), area under the curve (AUC) (29.3%), and precision (10.4%) while reducing complexity. These results highlight the model's efficacy in accurately predicting cancer survival rates.
The analysis of survival and reliability considered of topics and methods of vital statistics at the present time because of their importance in the various demographical, medical, industrial and engineering fields. This research focused generate random data for samples from the probability distribution Generalized Gamma: GG, known as: "Inverse Transformation" Method: ITM, which includes the distribution cycle integration function incomplete Gamma integration making it more difficult classical estimation so will be the need to illustration to the method of numerical approximation and then appreciation of the function of survival function. It was estimated survival function by simulation the way "Monte Carlo". The Entropy method used for the
... Show MoreThe behavior and shear strength of full-scale (T-section) reinforced concrete deep beams, designed according to the strut-and-tie approach of ACI Code-19 specifications, with various large web openings were investigated in this paper. A total of 7 deep beam specimens with identical shear span-to-depth ratios have been tested under mid-span concentrated load applied monotonically until beam failure. The main variables studied were the effects of width and depth of the web openings on deep beam performance. Experimental data results were calibrated with the strut-and-tie approach, adopted by ACI 318-19 code for the design of deep beams. The provided strut-and-tie design model in ACI 318-19 code provision was assessed and found to be u
... Show MoreContracting cancer typically induces a state of terror among the individuals who are affected. Exploring how glucose excess, estrogen excess, and anxiety work together to affect the speed at which breast cancer cells multiply and the immune system’s response model is necessary to conceive of ways to stop the spread of cancer. This paper proposes a mathematical model to investigate the impact of psychological panic, glucose excess, and estrogen excess on the interaction of cancer and immunity. The proposed model is precisely described. The focus of the model’s dynamic analysis is to identify the potential equilibrium locations. According to the analysis, it is possible to establish four equilibrium positions. The stability analys
... Show More<p><span>A Botnet is one of many attacks that can execute malicious tasks and develop continuously. Therefore, current research introduces a comparison framework, called BotDetectorFW, with classification and complexity improvements for the detection of Botnet attack using CICIDS2017 dataset. It is a free online dataset consist of several attacks with high-dimensions features. The process of feature selection is a significant step to obtain the least features by eliminating irrelated features and consequently reduces the detection time. This process implemented inside BotDetectorFW using two steps; data clustering and five distance measure formulas (cosine, dice, driver & kroeber, overlap, and pearson correlation
... Show MoreBreast cancer is the commonest cause of cancer related death in women worldwide. Amplification or over-expression of the ERBB2 (HER/neu) gene occurs in approximately 15-30% of breast cancer cases and it is strongly associated with an increased disease recurrence and a poor prognosis. Determination of HER2/neu status is crucial in the treatment plan as that positive cases will respond to trastuzumab therapy. It has been used to test for HER2/neu by immunohistochemistry as a first step and then to study only the equivocal positive cases (score 2+) by in situ hybridization technique. The aim of our study is to compare between immunohistochemistry and silver in situ hybridization (SISH) in assessment of human epidermal growth factor (HER2/neu)
... Show MoreIn this work, Kinetic Phosphorescence Analyzer (KPA) has been used to measure the concentrations of uranium (UC) and Amorphous crystals (AMO) in urine samples of breast cancer patients in Baghdad. Additionally, a relation between UC and AMO with respect to patient's age has been deduced and studied.
Forty one urine samples of patients and five for healthy were taken from females lived in different residential area of Baghdad. The measured maximum UC value for urine samples of patients was 2.35 ± 0.053, the minimum value was 0.86 ± 0.034 μg/L, and an overall average was 1.6 ± 0.027 μg/L while the average UC for healthy females was 1.03 ± 0.020 μg/L.
From these results, AMO concentrations were found for all breast cancer patie
Breast cancer has got much attention in the recent years as it is a one of the complex diseases that can threaten people lives. It can be determined from the levels of secreted proteins in the blood. In this project, we developed a method of finding a threshold to classify the probability of being affected by it in a population based on the levels of the related proteins in relatively small case-control samples. We applied our method to simulated and real data. The results showed that the method we used was accurate in estimating the probability of being diseased in both simulation and real data. Moreover, we were able to calculate the sensitivity and specificity under the null hypothesis of our research question of being diseased o
... Show MoreThis research describes a new model inspired by Mobilenetv2 that was trained on a very diverse dataset. The goal is to enable fire detection in open areas to replace physical sensor-based fire detectors and reduce false alarms of fires, to achieve the lowest losses in open areas via deep learning. A diverse fire dataset was created that combines images and videos from several sources. In addition, another self-made data set was taken from the farms of the holy shrine of Al-Hussainiya in the city of Karbala. After that, the model was trained with the collected dataset. The test accuracy of the fire dataset that was trained with the new model reached 98.87%.
level of effectiveness of Glutathione - S - Transferees (GST), Glutathione peroxides (GPX),Malondialdehyde (MDA) the product of lipid peroxidation and some trace elements ( zinc,seleinum,iron ,copper ) had been measured in sera of (50) women with breast disease.which had been divided to : Control group (25),The first group (A) benign breast tumors (25),the second group (B) breast cancer (25). The results showed a clear moral high level of Glutathione - S - Transferees (GST), Glutathione peroxidase (GPX) , and Malondialdehyde (MDA) level in breast cancer group while a slight increase were observed in the levels of these enzymes and(MDA) in benign breast group. A significant reduction was evident in the levels of selenium and zinc
... Show More