Vision loss happens due to diabetic retinopathy (DR) in severe stages. Thus, an automatic detection method applied to diagnose DR in an earlier phase may help medical doctors to make better decisions. DR is considered one of the main risks, leading to blindness. Computer-Aided Diagnosis systems play an essential role in detecting features in fundus images. Fundus images may include blood vessels, exudates, micro-aneurysm, hemorrhages, and neovascularization. In this paper, our model combines automatic detection for the diabetic retinopathy classification with localization methods depending on weakly-supervised learning. The model has four stages; in stage one, various preprocessing techniques are applied to smooth the data set. In stage two, the network had gotten deeply to the optic disk segment for eliminating any exudate's false prediction because the exudates had the same color pixel as the optic disk. In stage three, the network is fed through training data to classify each label. Finally, the layers of the convolution neural network are re-edited, and used to localize the impact of DR on the patient's eye. The framework tackles the matching technique between two essential concepts where the classification problem depends on the supervised learning method. While the localization problem was obtained by the weakly supervised method. An additional layer known as weakly supervised sensitive heat map (WSSH) was added to detect the ROI of the lesion at a test accuracy of 98.65%, while comparing with Class Activation Map that involved weakly supervised technology achieved 0.954. The main purpose is to learn a representation that collect the central localization of discriminative features in a retina image. CNN-WSSH model is able to highlight decisive features in a single forward pass for getting the best detection of lesions.
This article introduces the concept of finitely null-additive set function relative to the σ– ring and many properties of this concept have been discussed. Furthermore, to introduce and study the notion of finitely weakly null-additive set function relative to the σ– ring as a generalization of some concepts such as measure, countably additive, finitely additive, countably null-additive, countably weakly null-additive and finitely null-additive. As the first result, it has been proved that every finitely null-additive is a finitely weakly null-additive. Finally, the paper introduces a study of the concept of outer measure as a stronger form of finitely weakly null-additive.
Let
Background: left ventricular hypertrophy is independent risk factor for cardiovascular morbidity and mortality. The presence of diabetic complications such as autonomic neuropathy and retinopathy may predict cardiac structural changes in diabetic patients. Objective: To explore the chance of occurrence of left ventricular hypertrophy in diabetic patients and whether it is related to the presence of other diabetic complications. Methods: ninty seven (97) normotensive diabetic patients (57) type II with mean duration of diabetes of (12±6 y) and forty (40) type I with mean duration of (8±6 y) were studied by echocardiography and compared with 41 patients as control. Results: The LVMI was significantly higher in type II diabetics compared
... Show MoreThe growth of developments in machine learning, the image processing methods along with availability of the medical imaging data are taking a big increase in the utilization of machine learning strategies in the medical area. The utilization of neural networks, mainly, in recent days, the convolutional neural networks (CNN), have powerful descriptors for computer added diagnosis systems. Even so, there are several issues when work with medical images in which many of medical images possess a low-quality noise-to-signal (NSR) ratio compared to scenes obtained with a digital camera, that generally qualified a confusingly low spatial resolution and tends to make the contrast between different tissues of body are very low and it difficult to co
... Show MoreAssessing the accuracy of classification algorithms is paramount as it provides insights into reliability and effectiveness in solving real-world problems. Accuracy examination is essential in any remote sensing-based classification practice, given that classification maps consistently include misclassified pixels and classification misconceptions. In this study, two imaginary satellites for Duhok province, Iraq, were captured at regular intervals, and the photos were analyzed using spatial analysis tools to provide supervised classifications. Some processes were conducted to enhance the categorization, like smoothing. The classification results indicate that Duhok province is divided into four classes: vegetation cover, buildings,
... Show MoreIn this paper the concepts of weakly (resp., closure, strongly) Perfect Mappings are defined and the important relationships are studied: (a) Comparison between deferent forms of perfect mappings. (b) Relationship between compositions of deferent forms of perfect mappings. (c) Investigate relationships between deferent forms of perfect mappings and their graphs mappings.
Objectives: Dickkopf-1 (DKK-1) is WNT/b-catenin pathway antagonist which plays a detrimental role in the development of diabetic retinopathy (DR). This research aimed to assess serum DKK-1 levels in diabetic patients who have and have not developed DR and, compare them with the control subjects finding out whether we can use it as an indicator for DR early diagnosis and to find out which one of the widely used two groups of antidiabetic treatments had the greater effect on this biomarker and hence on the progression of DR. Methods: The study participants were divided into two subgroups: First, 70 patients (36 male, 34 female) with type 2 diabetes mellitus, among them 35 patients diagnosed with DR and 35 with no evidence of DR, and s
... Show MoreA new generalizations of coretractable modules are introduced where a module is called t-essentially (weakly t-essentially) coretractable if for all proper submodule of , there exists f End( ), f( )=0 and Imf tes (Im f + tes ). Some basic properties are studied and many relationships between these classes and other related one are presented.
Regression testing is a crucial phase in the software development lifecycle that makes sure that new changes/updates in the software system don’t introduce defects or don’t affect adversely the existing functionalities. However, as the software systems grow in complexity, the number of test cases in regression suite can become large which results into more testing time and resource consumption. In addition, the presence of redundant and faulty test cases may affect the efficiency of the regression testing process. Therefore, this paper presents a new Hybrid Framework to Exclude Similar & Faulty Test Cases in Regression Testing (ETCPM) that utilizes automated code analysis techniques and historical test execution data to
... Show More