In this paper, certain types of regularity of topological spaces have been highlighted, which fall within the study of generalizations of separation axioms. One of the important axioms of separation is what is called regularity, and the spaces that have this property are not few, and the most important of these spaces are Euclidean spaces. Therefore, limiting this important concept to topology is within a narrow framework, which necessitates the use of generalized open sets to obtain more good characteristics and preserve the properties achieved in general topology. Perhaps the reader will realize through the research that our generalization preserved most of the characteristics, the most important of which is the hereditary property. Two types of regular spaces have been presented, namely the topological space Rp and the topological space S-Rp. The properties of these two spaces and their relationship with each other, as well as the effect of functions on them, have been studied. In addition several theorems have been proved regarding the sufficient and necessary conditions to make the topological spaces Rp-regular or S-Rp-regular. The above concepts have been linked with a new type of Hausdorff space and the concepts under study are reinforced with examples.
This paper aims to define and study new separation axioms based on the b-open sets in topological ordered spaces, namely strong - -ordered spaces ( ). These new separation axioms are lying between strong -ordered spaces and - - spaces ( ). The implications of these new separation axioms among themselves and other existing types are studied, giving several examples and counterexamples. Also, several properties of these spaces are investigated; for example, we show that the property of strong - -ordered spaces ( ) is an inherited property under open subspaces.
This paper introduces some properties of separation axioms called α -feeble regular and α -feeble normal spaces (which are weaker than the usual axioms) by using elements of graph which are the essential parts of our α -topological spaces that we study them. Also, it presents some dependent concepts and studies their properties and some relationships between them.
In the present paper, new concepts of generalized continuous mappings, namely Еc and δ-ßc-continuous mappings have been introduced and studied by using a new generalized of open sets Еc and δ-ßc-open sets ,respectively. Several characterizations and fundamental properties of these forms of generalized continuous mappings are obtained. Moreover, the graphs of Еc-continuous and δ-ßc-continuous mappings have been investigated. In addition, the relationships among Еc-continuous and δ-ßc-continuous mappings and other well-known forms of g
... Show MoreThe objective of this paper is to define and introduce a new type of nano semi-open set which called nano -open set as a strong form of nano semi-open set which is related to nano closed sets in nano topological spaces. In this paper, we find all forms of the family of nano -open sets in term of upper and lower approximations of sets and we can easily find nano -open sets and they are a gate to more study. Several types of nano open sets are known, so we study relationship between the nano -open sets with the other known types of nano open sets in nano topological spaces. The Operators such as nano -interior and nano -closure are the part of this paper.
This paper contains an equivalent statements of a pre- space, where are considered subsets of with the product topology. An equivalence relation between the preclosed set and a pre- space, and a relation between a pre- space and the preclosed set with some conditions on a function are found. In addition, we have proved that the graph of is preclosed in if is a pre- space, where the equivalence relation on is open.
On the other hand, we introduce the definition of a pre-stable ( pre-stable) set by depending on the concept of a pre-neighborhood, where we get that every stable set is pre-stable. Moreover, we obtain that
... Show MoreIn this article an attempt has been made to procure the concept of pairwise neutrosophic simply open set, pairwise neutrosophic simply continuous mapping, pairwise neutrosophic simply open mapping, pairwise neutrosophic simply compactness, pairwise neutrosophic simply b-open set, pairwise neutrosophic simply b-continuous mapping, pairwise neutrosophic simply b-open mapping and pairwise neutrosophic simply b-compactness via neutrosophic bi-topological spaces (in short NBTS). Besides, we furnish few illustrative examples on them via NBTS. Further, we investigate some basic properties of them, and formulate several results on NBTSs.
In this work, we present the notion of sp[γ,γ^(* ) ]-open set, sp[γ,γ^(* ) ]-closed, and sp[γ,γ^(* ) ]-closure such that several properties are obtained. By using this concept, we define a new type of spaces named sp[γ,γ^(* ) ]-compact space.
In this paper, we procure the notions of neutrosophic simply b-open set, neutrosophic simply b-open cover, and neutrosophic simply b-compactness via neutrosophic topological spaces. Then, we establish some remarks, propositions, and theorems on neutrosophic simply
b-compactness. Further, we furnish some counter examples where the result fails.
In this paper, a new type of supra closed sets is introduced which we called supra β*-closed sets in a supra topological space. A new set of separation axioms is defined, and its many properties are examined. The relationships between supra β*-Ti –spaces (i = 0, 1, 2) are studied and shown with instances. Additionally, new varieties of supra β*-continuous maps have been taken into consideration based on the supra β*-open sets theory.
The main aim of this paper is to use the notion which was introduced in [1], to offered new classes of separation axioms in ideal spaces. So, we offered new type of notions of convergence in ideal spaces via the set. Relations among several types of separation axioms that offered were explained.