In this paper, certain types of regularity of topological spaces have been highlighted, which fall within the study of generalizations of separation axioms. One of the important axioms of separation is what is called regularity, and the spaces that have this property are not few, and the most important of these spaces are Euclidean spaces. Therefore, limiting this important concept to topology is within a narrow framework, which necessitates the use of generalized open sets to obtain more good characteristics and preserve the properties achieved in general topology. Perhaps the reader will realize through the research that our generalization preserved most of the characteristics, the most important of which is the hereditary property. Two types of regular spaces have been presented, namely the topological space Rp and the topological space S-Rp. The properties of these two spaces and their relationship with each other, as well as the effect of functions on them, have been studied. In addition several theorems have been proved regarding the sufficient and necessary conditions to make the topological spaces Rp-regular or S-Rp-regular. The above concepts have been linked with a new type of Hausdorff space and the concepts under study are reinforced with examples.
in the present article, we present the peristaltic motion of “Hyperbolic Tangent nanofluid” by a porous area in a two dimensional non-regular a symmetric channel with an inclination under the impact of inclination angle under the impact of inclined magnetic force, the convection conditions of “heat and mass transfer” will be showed. The matter of the paper will be further simplified with the assumptions of long wave length and less “Reynolds number”. we are solved the coupled non-linear equations by using technical analysis of “Regular perturbation method” of series solutions. We are worked out the basic equations of continuity, motion, temperature, and volume fraction
In this thesis, we introduced some kinds of fibrewise topological spaces by using totally continuous function is called fibrewise totally topological spaces. We generalize some fundamental results from fibrewise topology into fibrewise totally topological spaces. We also introduce the concepts of fibrewise totally separation axioms, fibrewise totally compact and locally totally compact topological spaces. As well as fibrewise totally perfect topological spaces. We explain and discuss new notion of fibrewise topological spaces, namely fibrewise totally topological spaces. We, also introduce the concepts of fibrewise totally closed topological spaces, fibrewise totally open topological spaces, fibrewise locally sliceable and locally s
... Show MoreThis paper presents the concepts of prepaths, paths, and cycles in α-topological spaces and studies them in orderable spaces. Also, many relationships are proved with their equivalences using some properties in topological spaces like compactness and locally connectedness.
The visual attraction of the fundamentals that require the availability in the design business, to achieve the needs of different social interactive and the need for recreation or entertainment as well as financial need and as such has considered the importance of a researcher studying the mechanics of visual attractions in the interior spaces have been identified according to the research problem the following question:
What are the mechanisms of visual attractions in the interior spaces and the current research aims to Recruitment mechanisms of visual attractions in the design of interior spaces as determined by three research limits are:
• Reduce the objective: the mechanics of visual attraction.
• Reducing the spatial: S
In this paper we introduce a lot of concepts in bitopological spaces which are ij-ω-converges to a subset, ij-ω-directed toward a set, ij-w-closed functions, ij-w-rigid set, ij-w-continuous functions and the main concept in this paper is ij-w-perfect functions between bitopological spaces. Several theorems and characterizations concerning these concepts are studied.
Here, we found an estimation of best approximation of unbounded functions which satisfied weighted Lipschitz condition with respect to convex polynomial by means of weighted Totik-Ditzian modulus of continuity
This paper is devoted to the discussion the relationships of connectedness between some types of graphs (resp. digraph) and Gm-closure spaces by using graph closure operators.
The aim of this paper is to introduce and study the notion type of fibrewise topological spaces, namely fibrewise fuzzy j-topological spaces, Also, we introduce the concepts of fibrewise j-closed fuzzy topological spaces, fibrewise j-open fuzzy topological spaces, fibrewise locally sliceable fuzzy j-topological spaces and fibrewise locally sectionable fuzzy j-topological spaces. Furthermore, we state and prove several Theorems concerning these concepts, where j = {δ, θ, α, p, s, b, β}.
We define and study new ideas of fibrewise topological space namely fibrewise multi-topological space . We also submit the relevance of fibrewise closed and open topological space . Also fibrewise multi-locally sliceable and fibrewise multi-locally section able multi-topological space . Furthermore, we propose and prove a number of statements about these ideas. On the other hand, extend separation axioms of ordinary topology into fibrewise setting. The separation axioms are said to be fibrewise multi-T0. spaces, fibrewise multi-T1spaces, fibrewise multi-R0 spaces, fibrewise multi-Hausdorff spaces, fibrewise multi-functionally Hausdorff spaces, fibrewise multi-regular spaces, fibrewise multi-completely regular spaces, fibrewise multi-normal
... Show MoreIn this paper, we give the concept of N-open set in bitopological spaces, where N is the first letter of the name of one of the authors, then we used this concept to define a new kind of compactness, namely N-compactness and we define the N-continuous function in bitopological spaces. We study some properties of N-compact spaces, and the relationships between this kind and two other known kinds which are S-compactness and pair-wise compactness.