In this paper, certain types of regularity of topological spaces have been highlighted, which fall within the study of generalizations of separation axioms. One of the important axioms of separation is what is called regularity, and the spaces that have this property are not few, and the most important of these spaces are Euclidean spaces. Therefore, limiting this important concept to topology is within a narrow framework, which necessitates the use of generalized open sets to obtain more good characteristics and preserve the properties achieved in general topology. Perhaps the reader will realize through the research that our generalization preserved most of the characteristics, the most important of which is the hereditary property. Two types of regular spaces have been presented, namely the topological space Rp and the topological space S-Rp. The properties of these two spaces and their relationship with each other, as well as the effect of functions on them, have been studied. In addition several theorems have been proved regarding the sufficient and necessary conditions to make the topological spaces Rp-regular or S-Rp-regular. The above concepts have been linked with a new type of Hausdorff space and the concepts under study are reinforced with examples.
Theoretical and experimental investigations of free convection through a cubic cavity with sinusoidal heat flux at bottom wall, the top wall is exposed to an outside ambient while the other walls are adiabatic saturated in porous medium had been approved in the present work. The range of Rayleigh number was and Darcy number values were . The theoretical part involved a numerical solution while the experimental part included a set of tests carried out to study the free convection heat transfer in a porous media (glass beads) for sinusoidal heat flux boundary condition. The investigation enclosed values of Rayleigh number (5845.6, 8801, 9456, 15034, 19188 and 22148) and angles of inclinations (0, 15, 30, 45 and 60 degree). The numerical an
... Show MoreThe hydraulic behavior of the flow can be changed by using large-scale geometric roughness elements in open channels. This change can help in controlling erosions and sedimentations along the mainstream of the channel. Roughness elements can be large stone or concrete blocks placed at the channel's bed to impose more resistance in the bed. The geometry of the roughness elements, numbers used, and configuration are parameters that can affect the flow's hydraulic characteristics. In this paper, velocity distribution along the flume was theoretically investigated using a series of tests of T-shape roughness elements, fixed height, arranged in three different configurations, differ in the number of lines of roughness element
... Show MoreWith the increasing integration of computers and smartphones into our daily lives, in addition to the numerous benefits it offers over traditional paper-based methods of conducting affairs, it has become necessary to incorporate one of the most essential facilities into this integration; namely: colleges. The traditional approach for conducting affairs in colleges is mostly paper-based, which only increases time and workload and is relatively decentralized. This project provides educational and management services for the university environment, targeting the staff, the student body, and the lecturers, on two of the most used platforms: smartphones and reliable web applications by clo
This study introduces a highly sensitive trapezium-shaped PCF based on an SPR refractometric sensor with unique design features. The structure of a sensor was designed and analyzed using COMSOL Multiphysics v5.6 based on Finite Element Method (FEM) with a focus on investigating the influence of various geometric parameters on its performance. The two channels were coated with a metallic gold layer to provide chemical stability, and a thin layer of TiO₂ improved the gold's adhesion to the fiber. The findings indicate that the proposed sensor achieves maximum amplitude and wavelength sensitivities of 1,779 RIU⁻¹ and 30,500 nm/RIU, respectively, with corresponding resolutions of 3.2
The theory of general topology view for continuous mappings is general version and is applied for topological graph theory. Separation axioms can be regard as tools for distinguishing objects in information systems. Rough theory is one of map the topology to uncertainty. The aim of this work is to presented graph, continuity, separation properties and rough set to put a new approaches for uncertainty. For the introduce of various levels of approximations, we introduce several levels of continuity and separation axioms on graphs in Gm-closure approximation spaces.
We define L-contraction mapping in the setting of D-metric spaces analogous to L-contraction mappings [1] in complete metric spaces. Also, give a definition for general D- matric spaces.And then prove the existence of fixed point for more general class of mappings in generalized D-metric spaces.
This research discusses the subject of identity in the urban environment as it attempts to answer a number of questions that come with the concept of identity. The first of these questions: What is identity? Can a definition or conceptual framework be developed for identity? What about individual, collective, cultural, ethnic, political and regional identity? Is there a definition of identity in the urban environment in particular? If there is a definition of identity, what about social mobility responsible for social change? How can we see identity through this kinetics? Can we assume that identity in the urban environment has a variable structure or is of variable shape with a more stable structure? Can we determine the spatial-tempora
... Show MoreThe goal of this article is to construct fibrewise w-compact (resp. locally w-compact) spaces. Some related results and properties of these concepts will be investigated. Furthermore, we investigate various relationships between these concepts and three classes of fibrewise w-separation axioms.