يعد أنموذج الانحدار اللوجستي من نماذج الانحدار المهمة، حيث يلقى اهتماماً واضحاً في معظم الدراسات التي تأخذ طابعاً اكثر تقدماً في عملية التحليل الاحصائي. أن طرائق التقدير الاعتيادية تفشل في التعامل مع البيانات التي تتضمن وجود القيم الشاذة حيث أن لها تأثير غير مرغوب على النتائج. سنستعرض في هذا البحث طرائق لتقدير معلمات انموذج الانحدار اللوجستي وهذه الطرائق هي: طريقة مقدر لابلاس (Laplace estimator) (LP-) وطريقة مقدر هوبر الحصين (Huber estimator) (H) . اذ تم اجراء المقارنة بين هاتين الطريقتين من خلال أسلوب المحاكاة وبأستعمال معيار المقارنة متوسط مربعات الخطأ (MSE) بنسب مختلفة من التلوث ولحجوم عينات مختلفة للوصول الى الطريقة الأفضل في تقدير المعلمات. واتضح من خلال المقارنة أن طريقة (H) هي الأفضل في تقدير معلمات أنموذج الانحدار اللوجستي .
Estimation stage is one of most important in process of selecting and identification for fit model, this model gives a best results if the good methods of estimation are depended on, one of those methods is Bayes method for estimation the parameters, it puts an assumption that parameter have a distribution.
This paper studies the robustness of estimators of empirical Bayes to know the properties of those estimators.
Researchers have increased interest in recent years in determining the optimum sample size to obtain sufficient accuracy and estimation and to obtain high-precision parameters in order to evaluate a large number of tests in the field of diagnosis at the same time. In this research, two methods were used to determine the optimum sample size to estimate the parameters of high-dimensional data. These methods are the Bennett inequality method and the regression method. The nonlinear logistic regression model is estimated by the size of each sampling method in high-dimensional data using artificial intelligence, which is the method of artificial neural network (ANN) as it gives a high-precision estimate commensurate with the dat
... Show MoreThis study discussed a biased estimator of the Negative Binomial Regression model known as (Liu Estimator), This estimate was used to reduce variance and overcome the problem Multicollinearity between explanatory variables, Some estimates were used such as Ridge Regression and Maximum Likelihood Estimators, This research aims at the theoretical comparisons between the new estimator (Liu Estimator) and the estimators
Fiscal policy is one of the important economic tools that affect economic development in general and human development in particular through its tools (public revenues, public expenditures, and the general budget).
It was hoped that the effects of fiscal policy during the study period (2004-2007) will positively reflect on human development indicators (health, education, income) by raising these indicators on the ground. After 2003, public revenues in Iraq increased due to increased revenues. However, despite this increase in public budgets, the actual impact on human development and its indicators was not equivalent to this increase in financial revenues. QR The value of the general budget allocations ha
... Show MoreAbstract
We produced a study in Estimation for Reliability of the Exponential distribution based on the Bayesian approach. These estimates are derived using Bayesian approaches. In the Bayesian approach, the parameter of the Exponential distribution is assumed to be random variable .we derived bayes estimators of reliability under four types when the prior distribution for the scale parameter of the Exponential distribution is: Inverse Chi-squar
... Show MoreThe cancer is one of the biggest health problems that facing the world . And the bladder cancer has a special place among the most spread cancers in Arab countries specially in Iraq and Egypt(2) . It is one of the diseases which can be treated and cured if it is diagnosed early . This research is aimed at studying the assistant factors that diagnose bladder cancer such as (patient's age , gender , and other major complains of hematuria , burning or pain during urination and micturition disorders) and then determine which factors are the most effective in the possibility of diagnosing this disease by using the statistical model (logistic regression model) and depending on a random sample of (128) patients . After
... Show MoreAbstract
Binary logistic regression model used in data classification and it is the strongest most flexible tool in study cases variable response binary when compared to linear regression. In this research, some classic methods were used to estimate parameters binary logistic regression model, included the maximum likelihood method, minimum chi-square method, weighted least squares, with bayes estimation , to choose the best method of estimation by default values to estimate parameters according two different models of general linear regression models ,and different s
... Show MoreThe last few years witnessed great and increasing use in the field of medical image analysis. These tools helped the Radiologists and Doctors to consult while making a particular diagnosis. In this study, we used the relationship between statistical measurements, computer vision, and medical images, along with a logistic regression model to extract breast cancer imaging features. These features were used to tell the difference between the shape of a mass (Fibroid vs. Fatty) by looking at the regions of interest (ROI) of the mass. The final fit of the logistic regression model showed that the most important variables that clearly affect breast cancer shape images are Skewness, Kurtosis, Center of mass, and Angle, with an AUCROC of
... Show MoreABSTRICT:
This study is concerned with the estimation of constant and time-varying parameters in non-linear ordinary differential equations, which do not have analytical solutions. The estimation is done in a multi-stage method where constant and time-varying parameters are estimated in a straight sequential way from several stages. In the first stage, the model of the differential equations is converted to a regression model that includes the state variables with their derivatives and then the estimation of the state variables and their derivatives in a penalized splines method and compensating the estimations in the regression model. In the second stage, the pseudo- least squares method was used to es
... Show MoreAbstract
The prevention of bankruptcy not only prolongs the economic life of the company and increases its financial performance, but also helps to improve the general economic well-being of the country. Therefore, forecasting the financial shortfall can affect various factors and affect different aspects of the company, including dividends. In this regard, this study examines the prediction of the financial deficit of companies that use the logistic regression method and its impact on the earnings per share of companies listed on the Iraqi Stock Exchange. The time period of the research is from 2015 to 2020, where 33 companies that were accepted in the Iraqi Stock Exchange were selected as a sample, and the res
... Show More