يعد أنموذج الانحدار اللوجستي من نماذج الانحدار المهمة، حيث يلقى اهتماماً واضحاً في معظم الدراسات التي تأخذ طابعاً اكثر تقدماً في عملية التحليل الاحصائي. أن طرائق التقدير الاعتيادية تفشل في التعامل مع البيانات التي تتضمن وجود القيم الشاذة حيث أن لها تأثير غير مرغوب على النتائج. سنستعرض في هذا البحث طرائق لتقدير معلمات انموذج الانحدار اللوجستي وهذه الطرائق هي: طريقة مقدر لابلاس (Laplace estimator) (LP-) وطريقة مقدر هوبر الحصين (Huber estimator) (H) . اذ تم اجراء المقارنة بين هاتين الطريقتين من خلال أسلوب المحاكاة وبأستعمال معيار المقارنة متوسط مربعات الخطأ (MSE) بنسب مختلفة من التلوث ولحجوم عينات مختلفة للوصول الى الطريقة الأفضل في تقدير المعلمات. واتضح من خلال المقارنة أن طريقة (H) هي الأفضل في تقدير معلمات أنموذج الانحدار اللوجستي .
Abstract:
Interest in the topic of prediction has increased in recent years and appeared modern methods such as Artificial Neural Networks models, if these methods are able to learn and adapt self with any model, and does not require assumptions on the nature of the time series. On the other hand, the methods currently used to predict the classic method such as Box-Jenkins may be difficult to diagnose chain and modeling because they assume strict conditions.
... Show More