يعد أنموذج الانحدار اللوجستي من نماذج الانحدار المهمة، حيث يلقى اهتماماً واضحاً في معظم الدراسات التي تأخذ طابعاً اكثر تقدماً في عملية التحليل الاحصائي. أن طرائق التقدير الاعتيادية تفشل في التعامل مع البيانات التي تتضمن وجود القيم الشاذة حيث أن لها تأثير غير مرغوب على النتائج. سنستعرض في هذا البحث طرائق لتقدير معلمات انموذج الانحدار اللوجستي وهذه الطرائق هي: طريقة مقدر لابلاس (Laplace estimator) (LP-) وطريقة مقدر هوبر الحصين (Huber estimator) (H) . اذ تم اجراء المقارنة بين هاتين الطريقتين من خلال أسلوب المحاكاة وبأستعمال معيار المقارنة متوسط مربعات الخطأ (MSE) بنسب مختلفة من التلوث ولحجوم عينات مختلفة للوصول الى الطريقة الأفضل في تقدير المعلمات. واتضح من خلال المقارنة أن طريقة (H) هي الأفضل في تقدير معلمات أنموذج الانحدار اللوجستي .
A seemingly uncorrelated regression (SUR) model is a special case of multivariate models, in which the error terms in these equations are contemporaneously related. The method estimator (GLS) is efficient because it takes into account the covariance structure of errors, but it is also very sensitive to outliers. The robust SUR estimator can dealing outliers. We propose two robust methods for calculating the estimator, which are (S-Estimations, and FastSUR). We find that it significantly improved the quality of SUR model estimates. In addition, the results gave the FastSUR method superiority over the S method in dealing with outliers contained in the data set, as it has lower (MSE and RMSE) and higher (R-Squared and R-Square Adjus
... Show MoreThe multiple linear regression model is an important regression model that has attracted many researchers in different fields including applied mathematics, business, medicine, and social sciences , Linear regression models involving a large number of independent variables are poorly performing due to large variation and lead to inaccurate conclusions , One of the most important problems in the regression analysis is the multicollinearity Problem, which is considered one of the most important problems that has become known to many researchers , As well as their effects on the multiple linear regression model, In addition to multicollinearity, the problem of outliers in data is one of the difficulties in constructing the reg
... Show MoreAbstract
Characterized by the Ordinary Least Squares (OLS) on Maximum Likelihood for the greatest possible way that the exact moments are known , which means that it can be found, while the other method they are unknown, but approximations to their biases correct to 0(n-1) can be obtained by standard methods. In our research expressions for approximations to the biases of the ML estimators (the regression coefficients and scale parameter) for linear (type 1) Extreme Value Regression Model for Largest Values are presented by using the advanced approach depends on finding the first derivative, second and third.
Recently Tobit Quantile Regression(TQR) has emerged as an important tool in statistical analysis . in order to improve the parameter estimation in (TQR) we proposed Bayesian hierarchical model with double adaptive elastic net technique and Bayesian hierarchical model with adaptive ridge regression technique .
in double adaptive elastic net technique we assume different penalization parameters for penalization different regression coefficients in both parameters λ1and λ2 , also in adaptive ridge regression technique we assume different penalization parameters for penalization different regression coefficients i
... Show MoreIn this paper we estimate the coefficients and scale parameter in linear regression model depending on the residuals are of type 1 of extreme value distribution for the largest values . This can be regard as an improvement for the studies with the smallest values . We study two estimation methods ( OLS & MLE ) where we resort to Newton – Raphson (NR) and Fisher Scoring methods to get MLE estimate because the difficulty of using the usual approach with MLE . The relative efficiency criterion is considered beside to the statistical inference procedures for the extreme value regression model of type 1 for largest values . Confidence interval , hypothesis testing for both scale parameter and regression coefficients
... Show MoreAbstract:
Interest in the topic of prediction has increased in recent years and appeared modern methods such as Artificial Neural Networks models, if these methods are able to learn and adapt self with any model, and does not require assumptions on the nature of the time series. On the other hand, the methods currently used to predict the classic method such as Box-Jenkins may be difficult to diagnose chain and modeling because they assume strict conditions.
... Show More
دُرِست العوامل المؤثرة في عدد ساعات تجهيز الكهرباء في مدينة بغداد، وتكونت عينة الدراسة من (365) مشاهدة يومية لعام 2018، وتمثلت بستة متغيرات استعملت في الدراسة. كان الهدف الرئيس هو دراسة العلاقة بين هذه المتغيرات، وتقدير تأثيرات المتغيرات التنبؤية في المتغير التابع (عدد ساعات تجهيز الكهرباء في مدينة بغداد). ولتحقيق ذلك استعملت نمذجة المعادلات الهيكلية/ تحليل المسار وبرنامج AMOS
... Show More