Preferred Language
Articles
/
ERdMlY4BVTCNdQwCMFVu
Semi-parametric regression function estimation for environmental pollution with measurement error using artificial flower pollination algorithm
...Show More Authors

Artificial Intelligence Algorithms have been used in recent years in many scientific fields. We suggest employing flower pollination algorithm in the environmental field to find the best estimate of the semi-parametric regression function with measurement errors in the explanatory variables and the dependent variable, where measurement errors appear frequently in fields such as chemistry, biological sciences, medicine, and epidemiological studies, rather than an exact measurement. We estimate the regression function of the semi-parametric model by estimating the parametric model and estimating the non-parametric model, the parametric model is estimated by using an instrumental variables method (Wald method, Bartlett’s method, and Durbin’s method), The nonparametric model is estimated by using kernel smoothing (Nadaraya Watson), K-Nearest Neighbor smoothing and Median smoothing. The Flower Pollination algorithms were employed and structured in building the ecological model and estimating the semi-parametric regression function with measurement errors in the explanatory and dependent variables, then compare the models to choose the best model used in the environmental scope measurement errors, where the comparison between the models is done using the mean square error (MSE).

Publication Date
Tue Apr 02 2019
Journal Name
Artificial Intelligence Research
A three-stage learning algorithm for deep multilayer perceptron with effective weight initialisation based on sparse auto-encoder
...Show More Authors

A three-stage learning algorithm for deep multilayer perceptron (DMLP) with effective weight initialisation based on sparse auto-encoder is proposed in this paper, which aims to overcome difficulties in training deep neural networks with limited training data in high-dimensional feature space. At the first stage, unsupervised learning is adopted using sparse auto-encoder to obtain the initial weights of the feature extraction layers of the DMLP. At the second stage, error back-propagation is used to train the DMLP by fixing the weights obtained at the first stage for its feature extraction layers. At the third stage, all the weights of the DMLP obtained at the second stage are refined by error back-propagation. Network structures an

... Show More
View Publication
Crossref (1)
Crossref
Publication Date
Fri Jan 01 2021
Journal Name
Computers, Materials & Continua
A New Hybrid Feature Selection Method Using T-test and Fitness Function
...Show More Authors

View Publication
Scopus (11)
Crossref (8)
Scopus Clarivate Crossref
Publication Date
Tue Dec 01 2020
Journal Name
Periodicals Of Engineering And Natural Sciences
Constructing a new mixed probability distribution with fuzzy reliability estimation
...Show More Authors

This paper deals with constructing mixed probability distribution from mixing exponential

Scopus (6)
Scopus
Publication Date
Thu Apr 01 2021
Journal Name
Pakistan Journal Of Statistics
Estimation intensity radiation of chest X-ray (CXR) with application
...Show More Authors

In this research we assumed that the number of emissions by time (𝑡) of radiation particles is distributed poisson distribution with parameter (𝑡), where  < 0 is the intensity of radiation. We conclude that the time of the first emission is distributed exponentially with parameter 𝜃, while the time of the k-th emission (𝑘 = 2,3,4, … . . ) is gamma distributed with parameters (𝑘, 𝜃), we used a real data to show that the Bayes estimator 𝜃 ∗ for 𝜃 is more efficient than 𝜃̂, the maximum likelihood estimator for 𝜃 by using the derived variances of both estimators as a statistical indicator for efficiency

Preview PDF
Scopus
Publication Date
Thu Apr 18 2024
Journal Name
Geomatics And Environmental Engineering
Error Analysis of Stonex X300 Laser Scanner Close-range Measurements
...Show More Authors

This research reports an error analysis of close-range measurements from a Stonex X300 laser scanner in order to address range uncertainty behavior based on indoor experiments under fixed environmental conditions. The analysis includes procedures for estimating the precision and accuracy of the observational errors estimated from the Stonex X300 observations and conducted at intervals of 5 m within a range of 5 to 30 m. The laser 3D point cloud data of the individual scans is analyzed following a roughness analysis prior to the implementation of a Levenberg–Marquardt iterative closest points (LM-ICP) registration. This leads to identifying the level of roughness that was encountered due to the range-finder’s limitations in close

... Show More
View Publication
Scopus (1)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Sat Feb 01 2020
Journal Name
Iop Conference Series: Materials Science And Engineering
Environmental assessment of land use in the city of Samawah using spatial techniques
...Show More Authors
Abstract<p>The city of Samawah is one of the most important cities which emerged in the poverty area within the poverty map produced by the Ministry of Planning, despite being an important provincial centre. Although it has great development potentials, it was neglected for more than 50 years,. This dereliction has caused a series of negative accumulations at the urban levels (environmental, social and economic). Therefore, the basic idea of this research is to detect part of these challenges that are preventing growth and development of the city. The methodology of the research is to extrapolate the reality with the analysis of the results, data and environmental impact assessment of the projec</p> ... Show More
View Publication
Scopus (4)
Scopus Clarivate Crossref
Publication Date
Sat Mar 01 2025
Journal Name
Coed
Engaging High School Teachers with Artificial Intelligence Concepts, Applications, and Developments
...Show More Authors

This work analyzes the effectiveness of an artificial intelligence (AI) community- building workshop designed for high school teachers and it focuses on contemporary issues related to AI concepts and applications. A group of high school teachers from local education districts attended a one-day AI hands-on workshop at our university. The workshop included several AI-related topics and hands-on examples and exercises aiming to introduce AI concepts and tools relevant to pre-college education. The participating teachers were expected to become a part of a collaborative network created to design, develop, and implement novel AI learning modules for high school students. Initial and a post-training surveys have been used to measure the

... Show More
View Publication
Crossref
Publication Date
Fri Mar 01 2013
Journal Name
Journal Of Economics And Administrative Sciences
Robust Two-Step Estimation and Approximation Local Polynomial Kernel For Time-Varying Coefficient Model With Balance Longitudinal Data
...Show More Authors

      In this research, the nonparametric technique has been presented to estimate the time-varying coefficients functions for the longitudinal balanced data that characterized by observations obtained through (n) from the independent subjects, each one of them is measured repeatedly by group of  specific time points (m). Although the measurements are independent among the different subjects; they are mostly connected within each subject and the applied techniques is the Local Linear kernel LLPK technique. To avoid the problems of dimensionality, and thick computation, the two-steps method has been used to estimate the coefficients functions by using the two former technique. Since, the two-

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sat Dec 01 2018
Journal Name
Journal Of Economics And Administrative Sciences
Comparison between the Methods of Ridge Regression and Liu Type to Estimate the Parameters of the Negative Binomial Regression Model Under Multicollinearity Problem by Using Simulation
...Show More Authors

The problem of Multicollinearity is one of the most common problems, which deal to a large extent with the internal correlation between explanatory variables. This problem is especially Appear in economics and applied research, The problem of Multicollinearity has a negative effect on the regression model, such as oversized variance degree and estimation of parameters that are unstable when we use the Least Square Method ( OLS), Therefore, other methods were used to estimate the parameters of the negative binomial model, including the estimated Ridge Regression Method and the Liu type estimator, The negative binomial regression model is a nonline

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Jan 01 2017
Journal Name
Pertanika Journal Of Science & Technology
Modified Kohonen network algorithm for selection of the initial centres of Gustafson-Kessel algorithm in credit scoring
...Show More Authors

Credit risk assessment has become an important topic in financial risk administration. Fuzzy clustering analysis has been applied in credit scoring. Gustafson-Kessel (GK) algorithm has been utilised to cluster creditworthy customers as against non-creditworthy ones. A good clustering analysis implemented by good Initial Centres of clusters should be selected. To overcome this problem of Gustafson-Kessel (GK) algorithm, we proposed a modified version of Kohonen Network (KN) algorithm to select the initial centres. Utilising similar degree between points to get similarity density, and then by means of maximum density points selecting; the modified Kohonen Network method generate clustering initial centres to get more reasonable clustering res

... Show More
Scopus (9)
Scopus