Preferred Language
Articles
/
3hdFWZABVTCNdQwCuIc4
Error Analysis of Stonex X300 Laser Scanner Close-range Measurements
...Show More Authors

This research reports an error analysis of close-range measurements from a Stonex X300 laser scanner in order to address range uncertainty behavior based on indoor experiments under fixed environmental conditions. The analysis includes procedures for estimating the precision and accuracy of the observational errors estimated from the Stonex X300 observations and conducted at intervals of 5 m within a range of 5 to 30 m. The laser 3D point cloud data of the individual scans is analyzed following a roughness analysis prior to the implementation of a Levenberg–Marquardt iterative closest points (LM-ICP) registration. This leads to identifying the level of roughness that was encountered due to the range-finder’s limitations in close-ranging as well as measurements that were obtained from extreme incident angle signals. The measurements were processed using a statistical outlier removal (SOR) filter to reduce the noise impact toward a smoother data set. The geometric differences and the RMSE values in the 3D coordinate directions were computed and analyzed, which showed the potential of the Stonex X300 measurements in close-ranging following a careful statistical analysis. It was found that the error differences in the vertical direction had a consistent behavior when the range increased, whereas the errors in the horizontal direction varied. However, it is more common to produce errors in the vertical direction as compared to the horizontal one.

Scopus Crossref
View Publication
Publication Date
Sun Apr 30 2023
Journal Name
Iraqi Journal Of Science
User Oriented Calibration Method for Stonex X300 Terrestrial Laser Scanner
...Show More Authors

    Terrestrial laser scanners (TLSs) are 3D imaging systems that provide the most powerful 3D representation and practical solutions for various applications. Hence this is due to effective range measurements, 3D point cloud reliability, and rapid acquisition performance. Stonex X300 TOF scanner delivered better certainty in far-range than in close-range measurements due to the high noise level inherent within the data delivered from Time of Flight (TOF) scanning sensors. However, if these errors are manipulated properly using a valid calibration model, more accurate products can be obtained even from very close-range measurements. Therefore, to fill this gap, this research presents a user-oriented target-based calibration routine to

... Show More
View Publication Preview PDF
Scopus (1)
Scopus Crossref
Publication Date
Tue Oct 30 2018
Journal Name
Journal Of Engineering
Accuracy Assessment of Stonex X-300 Laser Scanner Cameras
...Show More Authors

Assessment the actual accuracy of laboratory devices prior to first use is very important to know the capabilities of such devices and employ them in multiple domains. As the manual of the device provides information and values in laboratory conditions for the accuracy of these devices, thus the actual evaluation process is necessary.

In this paper, the accuracy of laser scanner (stonex X-300) cameras were evaluated, so that those cameras attached to the device and lead supporting role in it. This is particularly because the device manual did not contain sufficient information about those cameras.

To know the accuracy when using these cameras in close range photogrammetry, laser scanning (stonex X-300) de

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue Jan 19 2016
Journal Name
Journal Of Engineering
Assessing Close Range Photogrammetric Approach to Evaluate Pavement Surface Condition
...Show More Authors

The aim of this research is to adopt a close range photogrammetric approach to evaluate the pavement surface condition, and compare the results with visual measurements. This research is carried out on the road of Baghdad University campus in AL-Jaderiyiah for evaluating the scaling, surface texture for Portland cement concrete and rutting, surface texture for asphalt concrete pavement. Eighty five stereo images of pavement distresses were captured perpendicular to the surface using a DSLR camera. Photogrammetric process was carried out by using ERDAS IMAGINE V.8.4. The results were modeled by using a relationship between the photogrammetric and visual techniques and selected the highest coefficient of determination (R2). The first techniqu

... Show More
Publication Date
Fri Jan 01 2016
Journal Name
Journal Of Engineering
Assessing Close Range Photogrammetric Approach to Evaluate Pavement Surface Condition
...Show More Authors

The aim of this research is to adopt a close range photogrammetric approach to evaluate the pavement surface condition, and compare the results with visual measurements. This research is carried out on the road of Baghdad University campus in AL-Jaderiyiah for evaluating the scaling, surface texture for Portland cement concrete and rutting, surface texture for asphalt concrete pavement. Eighty five stereo images of pavement distresses were captured perpendicular to the surface using a DSLR camera. Photogrammetric process was carried out by using ERDAS IMAGINE V.8.4.  The results were modeled by using a relationship between the photogrammetric and visual techniques and selected the highest coefficient of determinatio

... Show More
View Publication Preview PDF
Publication Date
Sun Mar 01 2015
Journal Name
Journal Of Engineering
Digital Orthophoto Production Using Close-Range Photographs for High Curved Objects
...Show More Authors

Orthophoto provides a significant alternative capability for the presentation of architectural or archaeological applications. Although orthophoto production from airphotography of high or lower altitudes is considered to be typical, the close range applications for the large-scale survey of statue or art masterpiece or any kind of monuments still contain a lot of interesting issues to be investigated.

In this paper a test was carried out for the production of large scale orthophoto of highly curved surface, using a statue constructed of some kind of stones. In this test we use stereo photographs to produce the orthophoto in stead of single photo and DTM, by applying the DLT mathematical relationship as base formula in differenti

... Show More
View Publication Preview PDF
Publication Date
Thu Aug 30 2018
Journal Name
Journal Of Engineering
Accuracy Assessment of Various Resolutions Digital Cameras For Close Range Photogrammetry Applications
...Show More Authors

Due to the great evolution in digital commercial cameras, several studies have addressed the using of such cameras in different civil and close-range applications such as 3D models generation. However, previous studies have not discussed a precise relationship between a camera resolution and the accuracy of the models generated based on images of this camera. Therefore the current study aims to evaluate the accuracy of the derived 3D buildings models captured by different resolution cameras. The digital photogrammetric methods were devoted to derive 3D models using the data of various resolution cameras and analyze their accuracies. This investigation involves selecting three different resolution cameras (low, medium and

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Wed Dec 29 2021
Journal Name
Al-khwarizmi Engineering Journal
Analysis of Magnetorheological Normally Close Directional Control Valve: Magnetorheological normally close directional control valve
...Show More Authors

This valve is intended for use in valves for steering movement, using the qualities of the Magneto-rheological (MR) fluid to regulate the fluid, direct contact without the utilization of moving parts like a spool, a connection between electric flux, and fluid power was made, The simulation was done to employ the" finite element method of magnetism (FEMM)" to arrive at the best design. This software is used for magnetic resonance valve finite element analysis. The valve's best performance was obtained by using a closed directional control valve in the normal state normally closed (NC) MR valve, with simulation results revealing the optimum magnetic flux density in the absence of a current and the shedding condition, as well as the optimum

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue Dec 29 2020
Journal Name
Sensors
Calibrating Range Measurements of Lidars Using Fixed Landmarks in Unknown Positions
...Show More Authors

We consider the problem of calibrating range measurements of a Light Detection and Ranging (lidar) sensor that is dealing with the sensor nonlinearity and heteroskedastic, range-dependent, measurement error. We solved the calibration problem without using additional hardware, but rather exploiting assumptions on the environment surrounding the sensor during the calibration procedure. More specifically we consider the assumption of calibrating the sensor by placing it in an environment so that its measurements lie in a 2D plane that is parallel to the ground. Then, its measurements come from fixed objects that develop orthogonally w.r.t. the ground, so that they may be considered as fixed points in an inertial reference frame. Moreov

... Show More
View Publication
Scopus (1)
Crossref (3)
Scopus Clarivate Crossref
Publication Date
Wed Dec 29 2021
Journal Name
Al-khwarizmi Engineering Journal
Analysis of Magnetorheological Normally Close Directional Control Valve
...Show More Authors

This valve is intended for use in valves for steering movement, using the qualities of the Magneto-rheological (MR) fluid to regulate the fluid, direct contact without the utilization of moving parts like a spool, a connection between electric flux, and fluid power was made, The simulation was done to employ the" finite element method of magnetism (FEMM)" to arrive at the best design. This software is used for magnetic resonance valve finite element analysis. The valve's best performance was obtained by using a closed directional control valve in the normal state normally closed (NC) MR valve, with simulation results revealing the optimum magnetic flux density in the absence of a current and the shedding condition, as well as the optimum pr

... Show More
Preview PDF
Publication Date
Thu Jul 20 2023
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Simulation and Analysis the Attenuation Effect of Atmospheric Layers on a Laser Beam Within the Visible Range
...Show More Authors

Abstract: The power and the size of the final spot of the laser beam reaching the target are very important requirements in most of the laser applications and fields such as medical, military, and scientific, so studying laser propagation in the atmosphere is a very important topic. The propagation of the laser beam through the atmosphere is subject to several attenuation processes that deplete the power and expand the beam. Through the simulation results of the free electron laser within the visible region of the electromagnetic spectrum (400-700nm), it was found that the attenuation increases with decreasing wavelength. Laser propagation in the presence of rain and snow leads to a very large l

... Show More
View Publication Preview PDF
Crossref