Preferred Language
Articles
/
ERc8U44BVTCNdQwCZUID
Deep Learning-Based Speech Enhancement Algorithm Using Charlier Transform

Scopus Crossref
View Publication
Publication Date
Thu Feb 01 2018
Journal Name
Iet Signal Processing
Scopus (36)
Crossref (38)
Scopus Clarivate Crossref
View Publication
Publication Date
Sun Jan 30 2022
Journal Name
Iraqi Journal Of Science
Gait Recognition Based on Deep Learning

      In current generation of technology, a robust security system is required based on biometric trait such as human gait, which is a smooth biometric feature to understand humans via their taking walks pattern. In this paper, a person is recognized based on his gait's style that is captured from a video motion previously recorded with a digital camera. The video package is handled via more than one phase after splitting it into a successive image (called frames), which are passes through a preprocessing step earlier than classification procedure operation. The pre-processing steps encompass converting each image into a gray image, cast off all undesirable components and ridding it from noise, discover differen

... Show More
Scopus (3)
Crossref (1)
Scopus Crossref
View Publication Preview PDF
Publication Date
Sun Apr 23 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Proposed Speech Analyses Method Using the Multiwavelet Transform

  Speech is the first invented way of communication that human used age before the invention of writing. In this paper, proposed method for speech analyses to extract features by using multiwavelet Transform (Repeated Row Preprocessing).The proposed system depends on the Euclidian differences of the coefficients of the multiwavelet Transform to determine the beast features of speech recognition. Each sample value in the reference file is computed by taking the average value of four samples for the same data (four speakers for the same phoneme). The result of the input data to every frame value in the reference file using the Euclidian distance to determine the frame with the minimum distance is said to be the "Best Match". Simulatio

... Show More
View Publication Preview PDF
Publication Date
Sun Feb 25 2024
Journal Name
Baghdad Science Journal
Oil spill classification based on satellite image using deep learning techniques

 An oil spill is a leakage of pipelines, vessels, oil rigs, or tankers that leads to the release of petroleum products into the marine environment or on land that happened naturally or due to human action, which resulted in severe damages and financial loss. Satellite imagery is one of the powerful tools currently utilized for capturing and getting vital information from the Earth's surface. But the complexity and the vast amount of data make it challenging and time-consuming for humans to process. However, with the advancement of deep learning techniques, the processes are now computerized for finding vital information using real-time satellite images. This paper applied three deep-learning algorithms for satellite image classification

... Show More
Scopus (1)
Scopus Crossref
View Publication Preview PDF
Publication Date
Thu Jun 30 2022
Journal Name
Iraqi Journal Of Science
Enhancement Digital Forensic Approach for Inter-Frame Video Forgery Detection Using a Deep Learning Technique

    The digital world has been witnessing a fast progress in technology, which led to an enormous increase in using digital devices, such as cell phones, laptops, and digital cameras. Thus, photographs and videos function as the primary sources of legal proof in courtrooms concerning any incident or crime. It has become important to prove the trustworthiness of digital multimedia. Inter-frame video forgery one of common types of video manipulation performed in temporal domain. It deals with inter-frame video forgery detection that involves frame deletion, insertion, duplication, and shuffling. Deep Learning (DL) techniques have been proven effective in analysis and processing of visual media. Dealing with video data needs to handle th

... Show More
Scopus (8)
Crossref (4)
Scopus Crossref
View Publication Preview PDF
Publication Date
Fri Jul 30 2021
Journal Name
Iraqi Journal For Electrical And Electronic Engineering
EEG Motor-Imagery BCI System Based on Maximum Overlap Discrete Wavelet Transform (MODWT) and Machine learning algorithm

The ability of the human brain to communicate with its environment has become a reality through the use of a Brain-Computer Interface (BCI)-based mechanism. Electroencephalography (EEG) has gained popularity as a non-invasive way of brain connection. Traditionally, the devices were used in clinical settings to detect various brain diseases. However, as technology advances, companies such as Emotiv and NeuroSky are developing low-cost, easily portable EEG-based consumer-grade devices that can be used in various application domains such as gaming, education. This article discusses the parts in which the EEG has been applied and how it has proven beneficial for those with severe motor disorders, rehabilitation, and as a form of communi

... Show More
Scopus Crossref
View Publication
Publication Date
Sun Jan 01 2017
Journal Name
Ieee Access
Scopus (37)
Crossref (35)
Scopus Clarivate Crossref
View Publication
Publication Date
Tue Jan 30 2024
Journal Name
Iraqi Journal Of Science
Diabetes Diagnosis Using Deep Learning

     Hyperglycemia is a complication of diabetes (high blood sugar). This condition causes biochemical alterations in the cells of the body, which may lead to structural and functional problems throughout the body, including the eye. Diabetes retinopathy (DR) is a type of retinal degeneration induced by long-term diabetes that may lead to blindness. propose our deep learning method for the early detection of retinopathy using an efficient net B1 model and using the APTOS 2019 dataset. we used the Gaussian filter as one of the most significant image-processing algorithms. It recognizes edges in the dataset and reduces superfluous noise. We will enlarge the retina picture to 224×224 (the Efficient Net B1 standard) and utilize data aug

... Show More
Scopus Crossref
View Publication Preview PDF
Publication Date
Thu Jun 30 2022
Journal Name
Iraqi Journal Of Science
Telecom Churn Prediction based on Deep Learning Approach

      The transition of customers from one telecom operator to another has a direct impact on the company's growth and revenue. Traditional classification algorithms fail to predict churn effectively. This research introduces a deep learning model for predicting customers planning to leave to another operator. The model works on a high-dimensional large-scale data set. The performance of the model was measured against other classification algorithms, such as Gaussian NB, Random Forrest, and Decision Tree in predicting churn. The evaluation was performed based on accuracy, precision, recall, F-measure, Area Under Curve (AUC), and Receiver Operating Characteristic (ROC) Curve. The proposed deep learning model performs better than othe

... Show More
Scopus (4)
Crossref (3)
Scopus Crossref
View Publication Preview PDF
Publication Date
Tue Apr 02 2019
Journal Name
Artificial Intelligence Research
A three-stage learning algorithm for deep multilayer perceptron with effective weight initialisation based on sparse auto-encoder

A three-stage learning algorithm for deep multilayer perceptron (DMLP) with effective weight initialisation based on sparse auto-encoder is proposed in this paper, which aims to overcome difficulties in training deep neural networks with limited training data in high-dimensional feature space. At the first stage, unsupervised learning is adopted using sparse auto-encoder to obtain the initial weights of the feature extraction layers of the DMLP. At the second stage, error back-propagation is used to train the DMLP by fixing the weights obtained at the first stage for its feature extraction layers. At the third stage, all the weights of the DMLP obtained at the second stage are refined by error back-propagation. Network structures an

... Show More
Crossref (1)
Crossref
View Publication