Preferred Language
Articles
/
DhgG55gBVTCNdQwCasKj
Machine learning models for predicting morphological traits and optimizing genotype and planting date in roselle (Hibiscus Sabdariffa L.)
...Show More Authors

Accurate prediction and optimization of morphological traits in Roselle are essential for enhancing crop productivity and adaptability to diverse environments. In the present study, a machine learning framework was developed using Random Forest and Multi-layer Perceptron algorithms to model and predict key morphological traits, branch number, growth period, boll number, and seed number per plant, based on genotype and planting date. The dataset was generated from a field experiment involving ten Roselle genotypes and five planting dates. Both RF and MLP exhibited robust predictive capabilities; however, RF (R² = 0.84) demonstrated superior performance compared to MLP (R² = 0.80), underscoring its efficacy in capturing the nonlinear genotype-by-environment interactions. Permutation-based feature importance analysis further revealed that planting date had a more significant impact on trait variation than genotype. To identify optimal combinations of genotype and planting date for maximizing morphological traits, the RF model was integrated with the Non-dominated Sorting Genetic Algorithm II (NSGA-II). According to the RF–NSGA-II optimization results, the optimal values, including 26 branches per plant, a growth period of 176 days, 116 bolls per plant, and 1517 seed numbers per plant, were achieved with the Qaleganj genotype planted on May 5. Collectively, these findings highlight the potential of integrating machine learning and evolutionary optimization algorithms as powerful computational tools for crop improvement and agronomic decision-making.

Scopus Clarivate Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Thu Dec 01 2022
Journal Name
Al-khwarizmi Engineering Journal
Comparative Transfer Learning Models for End-to-End Self-Driving Car
...Show More Authors

Self-driving automobiles are prominent in science and technology, which affect social and economic development. Deep learning (DL) is the most common area of study in artificial intelligence (AI). In recent years, deep learning-based solutions have been presented in the field of self-driving cars and have achieved outstanding results. Different studies investigated a variety of significant technologies for autonomous vehicles, including car navigation systems, path planning, environmental perception, as well as car control. End-to-end learning control directly converts sensory data into control commands in autonomous driving. This research aims to identify the most accurate pre-trained Deep Neural Network (DNN) for predicting the steerin

... Show More
View Publication Preview PDF
Scopus (3)
Crossref (1)
Scopus Crossref
Publication Date
Tue Dec 05 2023
Journal Name
Baghdad Science Journal
Processing of Polymers Stress Relaxation Curves Using Machine Learning Methods
...Show More Authors

Currently, one of the topical areas of application of machine learning methods is the prediction of material characteristics. The aim of this work is to develop machine learning models for determining the rheological properties of polymers from experimental stress relaxation curves. The paper presents an overview of the main directions of metaheuristic approaches (local search, evolutionary algorithms) to solving combinatorial optimization problems. Metaheuristic algorithms for solving some important combinatorial optimization problems are described, with special emphasis on the construction of decision trees. A comparative analysis of algorithms for solving the regression problem in CatBoost Regressor has been carried out. The object of

... Show More
View Publication Preview PDF
Scopus (2)
Scopus Crossref
Publication Date
Sun Jan 01 2023
Journal Name
Physical Mesomechanics Of Condensed Matter: Physical Principles Of Multiscale Structure Formation And The Mechanisms Of Nonlinear Behavior: Meso2022
Effect of L-cysteine capping the CdSe, CdSe:CdS on structural and morphological properties
...Show More Authors

View Publication
Scopus (4)
Crossref (3)
Scopus Crossref
Publication Date
Thu Aug 22 2019
Journal Name
Al-khwarizmi Engineering Journal
Optimizing the Parameters of Hot-wire CNC Machine to Enhance the Cutting of Plastic Foam
...Show More Authors

     Hot-wire cutting is one of the important, non-traditional thermomechanical way to cut polymer, usually expanded foam and extruded foam, in low volume manufacturing. The study and analysis of Hot-Wire cutting parameters play an important role to enhance the quality and accuracy of the process and products. The effects on the surface have been investigated by using experimental tests designed according to the Taguchi orthogonal array (OA). In this study, four parameters with five levels for each parameter have been used: [temperature of wire (A) (100, 120, 130, 150, 160) °C], [diameter of wire (B) (0.3,0.4,0.5,0.7,0.8) mm], [velocity of cutting (C) (200, 300,400,500,600) mm/min], [and density of foam (D) (0.01,0.0

... Show More
View Publication Preview PDF
Publication Date
Wed Apr 16 2025
Journal Name
International Journal Of Engineering Pedagogy (ijep)
Utilizing Machine Learning Techniques to Predict University Students' Digital Competence
...Show More Authors

Given the importance of possessing the digital competence (DC) required by the technological age, whether for teachers or students and even communities and governments, educational institutions in most countries have sought to benefit from modern technologies brought about by the technological revolution in developing learning and teaching and using modern technologies in providing educational services to learners. Since university students will have the doors to work opened in all fields, the research aims to know their level of DC in artificial intelligence (AI) applications and systems utilizing machine learning (ML) techniques. The descriptive approach was used, as the research community consisted of students from the University

... Show More
View Publication Preview PDF
Scopus Clarivate Crossref
Publication Date
Wed Mar 15 2023
Journal Name
Bionatura
Estimating genetic parameters of maize hybrids and parents under different plant densities (Combining ability for yield and some other traits for maize Zea mays L.)
...Show More Authors

A field experiment was carried out in the fields of the Field Crops Department - Faculty of Agricultural Engineering Sciences. The study included five inbred lines (ZM43W (ZE), ZM60, ZM49W3E, ZM19, CDCN5), given numbers 1, 2, 3, 4 and 5) to study the hybrid vigor and both general and special combing ability (GCA, SCA) of the half diallel mating method, for the spring and fall seasons (2016). The genetic analysis shows that all crosses gave a positive hybrid vigor for grain yield per unit area at the two population densities. the highest value is 116.20% for cross (3´5 )at low density, and 89.22% for cross( 1´4 )at high density. The hybrid vigor for all crosses is positive at two densities for dry matter yield, crop growth rate an

... Show More
View Publication
Scopus (8)
Crossref (4)
Scopus Crossref
Publication Date
Sun Apr 30 2023
Journal Name
Iraqi Geological Journal
Evaluating Machine Learning Techniques for Carbonate Formation Permeability Prediction Using Well Log Data
...Show More Authors

Machine learning has a significant advantage for many difficulties in the oil and gas industry, especially when it comes to resolving complex challenges in reservoir characterization. Permeability is one of the most difficult petrophysical parameters to predict using conventional logging techniques. Clarifications of the work flow methodology are presented alongside comprehensive models in this study. The purpose of this study is to provide a more robust technique for predicting permeability; previous studies on the Bazirgan field have attempted to do so, but their estimates have been vague, and the methods they give are obsolete and do not make any concessions to the real or rigid in order to solve the permeability computation. To

... Show More
View Publication
Scopus (13)
Crossref (6)
Scopus Crossref
Publication Date
Tue Dec 31 2024
Journal Name
Sabrao Journal Of Breeding And Genetics
MORPHOLOGICAL AND ANATOMICAL STUDY OF THE FLORAL PARTS OF LILY (LILIUM CANDIDUM L.) CULTIVATED IN IRAQ
...Show More Authors

View Publication
Scopus (1)
Scopus Clarivate Crossref
Publication Date
Tue Dec 31 2024
Journal Name
Sabrao Journal Of Breeding And Genetics
MORPHOLOGICAL AND ANATOMICAL STUDY OF THE FLORAL PARTS OF LILY (LILIUM CANDIDUM L.) CULTIVATED IN IRAQ
...Show More Authors

View Publication
Scopus (1)
Scopus Clarivate Crossref
Publication Date
Tue Dec 01 2020
Journal Name
Baghdad Science Journal
Detection of Suicidal Ideation on Twitter using Machine Learning & Ensemble Approaches
...Show More Authors

Suicidal ideation is one of the most severe mental health issues faced by people all over the world. There are various risk factors involved that can lead to suicide. The most common & critical risk factors among them are depression, anxiety, social isolation and hopelessness. Early detection of these risk factors can help in preventing or reducing the number of suicides. Online social networking platforms like Twitter, Redditt and Facebook are becoming a new way for the people to express themselves freely without worrying about social stigma. This paper presents a methodology and experimentation using social media as a tool to analyse the suicidal ideation in a better way, thus helping in preventing the chances of being the victim o

... Show More
View Publication Preview PDF
Scopus (42)
Crossref (29)
Scopus Clarivate Crossref