Accurate prediction and optimization of morphological traits in Roselle are essential for enhancing crop productivity and adaptability to diverse environments. In the present study, a machine learning framework was developed using Random Forest and Multi-layer Perceptron algorithms to model and predict key morphological traits, branch number, growth period, boll number, and seed number per plant, based on genotype and planting date. The dataset was generated from a field experiment involving ten Roselle genotypes and five planting dates. Both RF and MLP exhibited robust predictive capabilities; however, RF (R² = 0.84) demonstrated superior performance compared to MLP (R² = 0.80), underscoring its efficacy in capturing the nonlinear genotype-by-environment interactions. Permutation-based feature importance analysis further revealed that planting date had a more significant impact on trait variation than genotype. To identify optimal combinations of genotype and planting date for maximizing morphological traits, the RF model was integrated with the Non-dominated Sorting Genetic Algorithm II (NSGA-II). According to the RF–NSGA-II optimization results, the optimal values, including 26 branches per plant, a growth period of 176 days, 116 bolls per plant, and 1517 seed numbers per plant, were achieved with the Qaleganj genotype planted on May 5. Collectively, these findings highlight the potential of integrating machine learning and evolutionary optimization algorithms as powerful computational tools for crop improvement and agronomic decision-making.
Hot-wire cutting is one of the important, non-traditional thermomechanical way to cut polymer, usually expanded foam and extruded foam, in low volume manufacturing. The study and analysis of Hot-Wire cutting parameters play an important role to enhance the quality and accuracy of the process and products. The effects on the surface have been investigated by using experimental tests designed according to the Taguchi orthogonal array (OA). In this study, four parameters with five levels for each parameter have been used: [temperature of wire (A) (100, 120, 130, 150, 160) °C], [diameter of wire (B) (0.3,0.4,0.5,0.7,0.8) mm], [velocity of cutting (C) (200, 300,400,500,600) mm/min], [and density of foam (D) (0.01,0.0
... Show MoreGiven the importance of possessing the digital competence (DC) required by the technological age, whether for teachers or students and even communities and governments, educational institutions in most countries have sought to benefit from modern technologies brought about by the technological revolution in developing learning and teaching and using modern technologies in providing educational services to learners. Since university students will have the doors to work opened in all fields, the research aims to know their level of DC in artificial intelligence (AI) applications and systems utilizing machine learning (ML) techniques. The descriptive approach was used, as the research community consisted of students from the University
... Show MoreMachine learning has a significant advantage for many difficulties in the oil and gas industry, especially when it comes to resolving complex challenges in reservoir characterization. Permeability is one of the most difficult petrophysical parameters to predict using conventional logging techniques. Clarifications of the work flow methodology are presented alongside comprehensive models in this study. The purpose of this study is to provide a more robust technique for predicting permeability; previous studies on the Bazirgan field have attempted to do so, but their estimates have been vague, and the methods they give are obsolete and do not make any concessions to the real or rigid in order to solve the permeability computation. To
... Show MoreA laboratory experiment was carried out at the College of Agriculture University of Baghdad in 2017. The aim was to improve the anatomical and physiological traits of broad bean seedling under salt stress by soaking it in salicylic acid. The concentrations of salicylic acid were 0, 10, and 20 mg L-1 and the electrical conductivity levels were 0, 3, and 6 dS m-1. The complete randomized design was used with four replications. The increasing of salicylic acid concentration up to 10 mg L-1 led to increasing the stem cortex thickness, stem vascular bundles thickness, and root cortex thickness significantly by (34.9,36.7,and 55 μm) respectively, while the treatment of 20 mg L-1 led to decreasing these traits by (28.2, 27.8, and 48.1 μm), compa
... Show MoreA laboratory experiment was carried out at the College of Agriculture University of Baghdad in 2017. The aim was to improve the anatomical and physiological traits of broad bean seedling under salt stress by soaking it in salicylic acid. The concentrations of salicylic acid were 0, 10, and 20 mg L-1 and the electrical conductivity levels were 0, 3, and 6 dS m-1. The complete randomized design was used with four replications. The increasing of salicylic acid concentration up to 10 mg L-1 led to increasing the stem cortex thickness, stem vascular bundles thickness, and root cortex thickness significantly by (34.9,36.7,and 55 µm) respectively, while the treatment of 20 mg L-1 led to decreasing these traits by (28.2, 27.8, and 48.1 µm
... Show MorePollen grains morphology have been studied for the wild species of the genus Erysimum L. which belong to Crucifereae family in Iraq. These species are E. filifolium Boiss. et Hausskn., E. oleifolium J. Gay, E. repandum L., E. eginense Hausskn. ex Bornm., E. aucheranum J. Gay, E. cheiranthoides L., E. alpestre Ky. ex Boiss., E. kurdicum Boiss. et Hausskn., E. tenellum DC., E. strophades Boiss., E. gladiiferum Boiss. et Hausskn., E. nasturtioides Boiss. et Hausskn. The study was performe by using light microscope . The study reveal that there was only one type of pollen grain named Tricoplate in all studied species . The study also demonstrated that there were differences among pollen grains morphology . The species E. kurdicum , E. alpestre
... Show MoreWireless Body Area Sensor Networks (WBASNs) have garnered significant attention due to the implementation of self-automaton and modern technologies. Within the healthcare WBASN, certain sensed data hold greater significance than others in light of their critical aspect. Such vital data must be given within a specified time frame. Data loss and delay could not be tolerated in such types of systems. Intelligent algorithms are distinguished by their superior ability to interact with various data systems. Machine learning methods can analyze the gathered data and uncover previously unknown patterns and information. These approaches can also diagnose and notify critical conditions in patients under monitoring. This study implements two s
... Show MoreSuicidal ideation is one of the most severe mental health issues faced by people all over the world. There are various risk factors involved that can lead to suicide. The most common & critical risk factors among them are depression, anxiety, social isolation and hopelessness. Early detection of these risk factors can help in preventing or reducing the number of suicides. Online social networking platforms like Twitter, Redditt and Facebook are becoming a new way for the people to express themselves freely without worrying about social stigma. This paper presents a methodology and experimentation using social media as a tool to analyse the suicidal ideation in a better way, thus helping in preventing the chances of being the victim o
... Show MoreThe support vector machine, also known as SVM, is a type of supervised learning model that can be used for classification or regression depending on the datasets. SVM is used to classify data points by determining the best hyperplane between two or more groups. Working with enormous datasets, on the other hand, might result in a variety of issues, including inefficient accuracy and time-consuming. SVM was updated in this research by applying some non-linear kernel transformations, which are: linear, polynomial, radial basis, and multi-layer kernels. The non-linear SVM classification model was illustrated and summarized in an algorithm using kernel tricks. The proposed method was examined using three simulation datasets with different sample
... Show More