In this paper, an ecological model with stage-structure in prey population, fear, anti-predator and harvesting are suggested. Lotka-Volterra and Holling type II functional responses have been assumed to describe the feeding processes . The local and global stability of steady points of this model are established. Finally, the global dynamics are studied numerically to investigate the influence of the parameters on the solutions of the system, especially the effect of fear and anti-predation.
In this paper, we investigate the impact of fear on a food chain mathematical model with prey refuge and harvesting. The prey species reproduces by to the law of logistic growth. The model is adapted from version of the Holling type-II prey-first predator and Lotka-Volterra for first predator-second predator model. The conditions, have been examined that assurance the existence of equilibrium points. Uniqueness and boundedness of the solution of the system have been achieve. The local and global dynamical behaviors are discussed and analyzed. In the end, numerical simulations are confirmed the theoretical results that obtained and to display the effectiveness of varying each parameter
Due to the fact that living organisms do not exist individually, but rather exist in clusters interacting with each other, which helps to spread epidemics among them. Therefore, the study of the prey-predator system in the presence of an infectious disease is an important topic because the disease affects the system's dynamics and its existence. The presence of the hunting cooperation characteristic and the induced fear in the prey community impairs the growth rate of the prey and therefore affects the presence of the predator as well. Therefore, this research is interested in studying an eco-epidemiological system that includes the above factors. Therefore, an eco-epidemiological prey-predator model incorporating predation fear and
... Show More<p>The objective of this paper is to study the dynamical behavior of an aquatic food web system. A mathematical model that includes nutrients, phytoplankton and zooplankton is proposed and analyzed. It is assumed that, the phytoplankton divided into two compartments namely toxic phytoplankton which produces a toxic substance as a defensive strategy against predation by zooplankton, and a nontoxic phytoplankton. All the feeding processes in this food web are formulating according to the Lotka-Volterra functional response. This model is represented mathematically by the set of nonlinear differential equations. The existence, uniqueness and boundedness of the solution of this model are investigated. The local and global stability
... Show MoreIt is proposed and studied a prey-predator system with a Holling type II functional response that merges predation fear with a predator-dependent prey's refuge. Understanding the impact of fear and refuge on the system's dynamic behavior is one of the objectives. All conceivable steady-states are investigated for their stability. The persistence condition of the system has been established. Local bifurcation analysis is performed in the Sotomayor sense. Extensive numerical simulation with varied parameters was used to explore the system's global dynamics. A limit cycle and a point attractor are the two types of attractors in the system. It's also interesting to note that the system exhibits bi-stability between these 2 types of attractors.
... Show MoreIn this paper, an eco-epidemiological prey-predator system when the predator is subjected to the weak Allee effect, and harvesting was proposed and studied. The set of ordinary differential equations that simulate the system’s dynamic is constructed. The impact of fear and Allee’s effect on the system's dynamic behavior is one of our main objectives. The properties of the solution of the system were studied. All possible equilibrium points were determined, and their local, as well as global stabilities, were investigated. The possibility of the occurrence of local bifurcation was studied. Numerical simulation was used to further evaluate the global dynamics and understood the effects of varying parameters on the asymptotic behavior of t
... Show MoreThe avoidance strategy of prey to predation and the predation strategy for predators are important topics in evolutionary biology. Both prey and predators adjust their behaviors in order to obtain the maximal benefits and to raise their biomass for each. Therefore, this paper is aimed at studying the impact of prey’s fear and group defense against predation on the dynamics of the food-web model. Consequently, in this paper, a mathematical model that describes a tritrophic Leslie-Gower food-web system is formulated. Sokol-Howell type of function response is adapted to describe the predation process due to the prey’s group defensive capability. The effects of fear due to the predation process are considered in the first two levels
... Show MoreUsing a mathematical model to simulate the interaction between prey and predator was suggested and researched. It was believed that the model would entail predator cannibalism and constant refuge in the predator population, while the prey population would experience predation fear and need for a predator-dependent refuge. This study aimed to examine the proposed model's long-term behavior and explore the effects of the model's key parameters. The model's solution was demonstrated to be limited and positive. All potential equilibrium points' existence and stability were tested. When possible, the appropriate Lyapunov function was utilized to demonstrate the equilibrium points' overall stability. The system's persistence requirements were spe
... Show More