Preferred Language
Articles
/
CRhHRpQBVTCNdQwC0QRu
3D Building Reconstruction Using DEM and Mosaic Model
...Show More Authors

A digital elevation model (DEM) is a digital representation of ground surface topography or terrain. It can be represented as a raster (a grid of squares) and it is commonly estimated by utilizing remote sensing techniques, or from land surveying. In this research a 3D building of Baghdad university campus have been performed using DEM, where the easting, northing, and elevation of 400 locations have been obtained by field survey using global positioning system (GPS). The image of the investigated area has been extracted from QuickBird satellite sensor (with spatial resolution of 0.6 m). This image has been geo-referenced by selecting ground control points of the GPS. The rectification is running, using 1st order polynomial transformation. Estimation of the ground layer elevation is carried out by spline and IDW interpolation, the buildings have been delineated as polygons with given real heights in the second layer. The mosaic algorithm has then been applied between the two layers to perform the final DEM creation process. Finally, the estimated DEM have been used to constructing 3-D building.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Mon Dec 24 2018
Journal Name
Civil Engineering Journal
Artificial Neural Network Model for the Prediction of Groundwater Quality
...Show More Authors

The present article delves into the examination of groundwater quality, based on WQI, for drinking purposes in Baghdad City. Further, for carrying out the investigation, the data was collected from the Ministry of Water Resources of Baghdad, which represents water samples drawn from 114 wells in Al-Karkh and Al-Rusafa sides of Baghdad city. With the aim of further determining WQI, four water parameters such as (i) pH, (ii) Chloride (Cl), (iii) Sulfate (SO4), and (iv) Total dissolved solids (TDS), were taken into consideration. According to the computed WQI, the distribution of the groundwater samples, with respect to their quality classes such as excellent, good, poor, very poor and unfit for human drinking purpose, was found to be

... Show More
View Publication
Crossref (30)
Clarivate Crossref
Publication Date
Tue May 16 2023
Journal Name
Journal Of Engineering
Statistical Model for Predicting the Optimum Gypsum Content in Concrete
...Show More Authors

The problem of internal sulfate attack in concrete is widespread in Iraq and neighboring countries.This is because of the high sulfate content usually present in sand and gravel used in it. In the present study the total effective sulfate in concrete was used to calculate the optimum SO3 content. Regression models were developed based on linear regression analysis to predict the optimum SO3 content usually referred as (O.G.C) in concrete. The data is separated to 155 for the development of the models and 37 for checking the models. Eight models were built for 28-days age. Then a late age (greater than 28-days) model was developed based on the predicted optimum SO3 content of 28-days and late age. Eight developed models were built for all

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Dec 26 2019
Journal Name
Journal Of Accounting And Financial Studies ( Jafs )
The impact of computerized planning on audit performance (Proposed model)
...Show More Authors

The development of technology used in computerized programs is considered on of the most important topics that is responsible for creating tools that can be used in the business environment, the audit profession is one of those professions that received this development. In order for this profession to be more effective, there must be a tool based on sound (correct) scientific basis that can be based upon to enhance the quality of auditing. The research also aims to propose a computerized program to plan the auditing process according to the methods appropriate to the working environment in the audit offices and companies in Iraq. The computerized program was applied to the research sample and the hypothesis of the research has been prov

... Show More
View Publication Preview PDF
Publication Date
Fri Dec 31 2021
Journal Name
Iraqi Geological Journal
Construction of Comprehensive Geological Model for an Iraqi Oil Reservoir
...Show More Authors

The paper generates a geological model of a giant Middle East oil reservoir, the model constructed based on the field data of 161 wells. The main aim of the paper was to recognize the value of the reservoir to investigate the feasibility of working on the reservoir modeling prior to the final decision of the investment for further development of this oilfield. Well log, deviation survey, 2D/3D interpreted seismic structural maps, facies, and core test were utilized to construct the developed geological model based on comprehensive interpretation and correlation processes using the PETREL platform. The geological model mainly aims to estimate stock-tank oil initially in place of the reservoir. In addition, three scenarios were applie

... Show More
Preview PDF
Scopus (7)
Crossref (1)
Scopus Crossref
Publication Date
Sun Jun 30 2002
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
A Phase Behavior Compositional Model for Jambour Cretaceous Oil Reservoir
...Show More Authors

View Publication Preview PDF
Publication Date
Fri Sep 30 2022
Journal Name
Journal Of Economics And Administrative Sciences
A Comparative Study for Estimate Fractional Parameter of ARFIMA Model
...Show More Authors

      Long memory analysis is one of the most active areas in econometrics and time series where various methods have been introduced to identify and estimate the long memory parameter in partially integrated time series. One of the most common models used to represent time series that have a long memory is the ARFIMA (Auto Regressive Fractional Integration Moving Average Model) which diffs are a fractional number called the fractional parameter. To analyze and determine the ARFIMA model, the fractal parameter must be estimated. There are many methods for fractional parameter estimation. In this research, the estimation methods were divided into indirect methods, where the Hurst parameter is estimated fir

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Jun 19 2023
Journal Name
Journal Of Engineering
Behavior of Reinforced Gypseous Soil Embankment Model under Cyclic Loading
...Show More Authors

The construction of embankment for roadway interchange system at urban area is restricted due to the large geometry requirements, since the value of land required for such construction is high, and the area available is limited as compared to rural area. One of the optimum solutions to such problem is the earth reinforcement technique which requires a limited area for embankment construction. Gypseous soil from Al-Anbar governorate area was obtained and subjected to various physical and chemical analysis to determine it is properties. A laboratory model box of 50x50x25 cm was used as a representative embankment; soil has been compacted in five layers at maximum dry density (modified compaction) and an aluminum reinforcement strips were i

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Apr 08 1999
Journal Name
Abhath Al- Yarmouk [basic Sciences And Engineering]
Model for Predicting the Cracking Moment in Structural Concrete Members
...Show More Authors

Publication Date
Tue Jun 01 2021
Journal Name
International Journal Of Nonlinear Analysis And Applications
Bayes estimators of a multivariate generalized hyperbolic partial regression model
...Show More Authors

View Publication
Scopus (1)
Scopus
Publication Date
Thu Jun 01 2023
Journal Name
International Journal Of Electrical And Computer Engineering (ijece)
An optimized deep learning model for optical character recognition applications
...Show More Authors

The convolutional neural networks (CNN) are among the most utilized neural networks in various applications, including deep learning. In recent years, the continuing extension of CNN into increasingly complicated domains has made its training process more difficult. Thus, researchers adopted optimized hybrid algorithms to address this problem. In this work, a novel chaotic black hole algorithm-based approach was created for the training of CNN to optimize its performance via avoidance of entrapment in the local minima. The logistic chaotic map was used to initialize the population instead of using the uniform distribution. The proposed training algorithm was developed based on a specific benchmark problem for optical character recog

... Show More
View Publication
Scopus (1)
Scopus Crossref