A digital elevation model (DEM) is a digital representation of ground surface topography or terrain. It can be represented as a raster (a grid of squares) and it is commonly estimated by utilizing remote sensing techniques, or from land surveying. In this research a 3D building of Baghdad university campus have been performed using DEM, where the easting, northing, and elevation of 400 locations have been obtained by field survey using global positioning system (GPS). The image of the investigated area has been extracted from QuickBird satellite sensor (with spatial resolution of 0.6 m). This image has been geo-referenced by selecting ground control points of the GPS. The rectification is running, using 1st order polynomial transformation. Estimation of the ground layer elevation is carried out by spline and IDW interpolation, the buildings have been delineated as polygons with given real heights in the second layer. The mosaic algorithm has then been applied between the two layers to perform the final DEM creation process. Finally, the estimated DEM have been used to constructing 3-D building.
The problem of internal sulfate attack in concrete is widespread in Iraq and neighboring countries.This is because of the high sulfate content usually present in sand and gravel used in it. In the present study the total effective sulfate in concrete was used to calculate the optimum SO3 content. Regression models were developed based on linear regression analysis to predict the optimum SO3 content usually referred as (O.G.C) in concrete. The data is separated to 155 for the development of the models and 37 for checking the models. Eight models were built for 28-days age. Then a late age (greater than 28-days) model was developed based on the predicted optimum SO3 content of 28-days and late age. Eight developed models were built for all
... Show MoreIn this paper, a mathematical model is proposed and studied to describe the spread of shigellosis disease in the population community. We consider it divided into four classes namely: the 1st class consists of unaware susceptible individuals, 2nd class of infected individuals, 3rd class of aware susceptible individuals and 4th class are people carrying bacteria. The solution existence, uniqueness as well as bounded-ness are discussed for the shigellosis model proposed. Also, the stability analysis has been conducted for all possible equilibrium points. Finally the proposed model is studied numerically to prove the analytic results and discussing the effects of the external sources for dis
... Show MoreLong memory analysis is one of the most active areas in econometrics and time series where various methods have been introduced to identify and estimate the long memory parameter in partially integrated time series. One of the most common models used to represent time series that have a long memory is the ARFIMA (Auto Regressive Fractional Integration Moving Average Model) which diffs are a fractional number called the fractional parameter. To analyze and determine the ARFIMA model, the fractal parameter must be estimated. There are many methods for fractional parameter estimation. In this research, the estimation methods were divided into indirect methods, where the Hurst parameter is estimated fir
... Show MoreGypseous soils are distributed in many regions in the world including Iraq, which cover more than (31%) of the surface area of the country. Existence of these soils, always with high gypsum content, caused difficult problems to the buildings and strategic projects due to dissolution and leaching of the gypsum caused by the action of water flow through soil mass. For the study, the gypseous soil was brought from Bahr Al-Najaf, Al-Najaf Governorate which is located in the middle of Iraq. The model pile was embedded in gypseous soil with 42% gypsum content. Compression axial model pile load tests have been carried out for model pile embedded in gypseous soil at initial degree of saturation of (7%) before and after soil satu
... Show MoreAcquisition provisions in Islamic jurisprudence
The convolutional neural networks (CNN) are among the most utilized neural networks in various applications, including deep learning. In recent years, the continuing extension of CNN into increasingly complicated domains has made its training process more difficult. Thus, researchers adopted optimized hybrid algorithms to address this problem. In this work, a novel chaotic black hole algorithm-based approach was created for the training of CNN to optimize its performance via avoidance of entrapment in the local minima. The logistic chaotic map was used to initialize the population instead of using the uniform distribution. The proposed training algorithm was developed based on a specific benchmark problem for optical character recog
... Show More