The main idea of this research is to consider fibrewise pairwise versions of the more important separation axioms of ordinary bitopology named fibrewise pairwise - spaces, fibrewise pairwise - spaces, fibrewise pairwise - spaces, fibrewise pairwise -Hausdorff spaces, fibrewise pairwise functionally -Hausdorff spaces, fibrewise pairwise -regular spaces, fibrewise pairwise completely -regular spaces, fibrewise pairwise -normal spaces and fibrewise pairwise functionally -normal spaces. In addition we offer some results concerning it.
In this paper, some basic notions and facts in the b-modular space similar to those in the modular spaces as a type of generalization are given. For example, concepts of convergence, best approximate, uniformly convexity etc. And then, two results about relation between semi compactness and approximation are proved which are used to prove a theorem on the existence of best approximation for a semi-compact subset of b-modular space.
In the present paper we introduce and study new classes of soft separation axioms in soft bitopological spaces, namely, soft (1,2)*-omega separation axioms and weak soft (1,2)*-omega separation axioms by using the concept of soft (1,2)*-omega open sets. The equivalent definitions and basic properties of these types of soft separation axioms also have been studied.
<p>In this paper, we prove there exists a coupled fixed point for a set- valued contraction mapping defined on X× X , where X is incomplete ordered G-metric. Also, we prove the existence of a unique fixed point for single valued mapping with respect to implicit condition defined on a complete G- metric.</p>
The theory of general topology view for continuous mappings is general version and is applied for topological graph theory. Separation axioms can be regard as tools for distinguishing objects in information systems. Rough theory is one of map the topology to uncertainty. The aim of this work is to presented graph, continuity, separation properties and rough set to put a new approaches for uncertainty. For the introduce of various levels of approximations, we introduce several levels of continuity and separation axioms on graphs in Gm-closure approximation spaces.
Here, we found an estimation of best approximation of unbounded functions which satisfied weighted Lipschitz condition with respect to convex polynomial by means of weighted Totik-Ditzian modulus of continuity
The concepts of higher Bi- homomorphism and Jordan higher Bi- homomorphism have been introduced and studied the relation between Jordan and ordinary higher Bi- homomorphism also the concepts of Co- higher Bi- homomorphism and Co- Jordan higher Bi- homomorphism introduced and the relation between them in Banach algebra have also been studied.
Within that research, we introduce fibrewise fuzzy types of the most important separation axioms in ordinary fuzz topology, namely fibrewise fuzzy (T 0 spaces, T 1 spaces, R 0 spaces, Hausdorff spaces, functionally Hausdorff spaces, regular spaces, completely regular spaces, normal spaces, and normal spaces). Too we add numerous outcomes about it.
The primary aim of this paper, is to introduce the rough probability from topological view. We used the Gm-topological spaces which result from the digraph on the stochastic approximation spaces to upper and lower distribution functions, the upper and lower mathematical expectations, the upper and lower variances, the upper and lower standard deviation and the upper and lower r th moment. Different levels for those concepts are introduced, also we introduced some results based upon those concepts.