In this work the concept of semi-generalized regular topological space was introduced and studied via semi generalized open sets. Many properties and results was investigated and studied, also it was shown that the quotient space of semi-generalized regular topological space is not, in general semi-generalizedspace.
Let A ⊆ V(H) of any graph H, every node w of H be labeled using a set of numbers; , where d(w,v) denotes the distance between node w and the node v in H, known as its open A-distance pattern. A graph H is known as the open distance-pattern uniform (odpu)-graph, if there is a nonempty subset A ⊆V(H) together with is the same for all . Here is known as the open distance pattern uniform (odpu-) labeling of the graph H and A is known as an odpu-set of H. The minimum cardinality of vertices in any odpu-set of H, if it exists, will be known as the odpu-number of the graph H. This article gives a characterization of maximal outerplanar-odpu graphs. Also, it establishes that the possible odpu-number of an odpu-maximal outerplanar graph i
... Show MoreSome relations of inclusion and their properties are investigated for functions of type " -valent that involves the generalized operator of Srivastava-Attiya by using the principle of strong differential subordination.
Background: Acute cholecystitis is common surgical
problem, which was treated previously by conservative
treatment .Later early open has been introduced as an
alternative to interval for treatment of acute cholecystitis.
Early open was found to be a safe, successful with
comparable postoperative complication rate. With the
advent of laparoscopy laparoscopic have been used for
chronic cholecystitis and became the first line of
treatment. New reports have shown that laparoscopic can
be used as an alternative to open for surgical treatment of
acute cholecystitis.
Objectives: to compare the success, safety of early
laparoscopic versus early open as a primary treatment of
acute cholecystitis.
Methods:
This research is trying to study the Intellectual political structures of the Open Society according to British Thinker –with Austrian origin- Karl Popper (1902-1994). In First Axe we dealt with the context of Open and Closed society in the Popper's thought. While in the Second Axe we studied the Utopian and graduated Engineering. Finally in the third Axe for the Rationalism, Freedom, Individualism, and the Democracy of Equality.
Interest in belowground plant growth is increasing, especially in relation to arguments that shallow‐rooted cultivars are efficient at exploiting soil phosphorus while deep‐rooted ones will access water at depth. However, methods for assessing roots in large numbers of plants are diverse and direct comparisons of methods are rare. Three methods for measuring root growth traits were evaluated for utility in discriminating rice cultivars: soil‐filled rhizotrons, hydroponics and soil‐filled pots whose bottom was sealed with a non‐woven fabric (a potential method for assessing root penetration ability). A set of 38 rice genotypes including the Oryza
Let R be a 2-torision free prime ring and ?, ?? Aut(R). Furthermore, G: R×R?R is a symmetric generalized (?, ?)-Biderivation associated with a nonzero (?, ?)-Biderivation D. In this paper some certain identities are presented satisfying by the traces of G and D on an ideal of R which forces R to be commutative
This paper presents a research for magnetohydrodynamic (MHD) flow of an incompressible generalized Burgers’ fluid including by an accelerating plate and flowing under the action of pressure gradient. Where the no – slip assumption between the wall and the fluid is no longer valid. The fractional calculus approach is introduced to establish the constitutive relationship of the generalized Burgers’ fluid. By using the discrete Laplace transform of the sequential fractional derivatives, a closed form solutions for the velocity and shear stress are obtained in terms of Fox H- function for the following two problems: (i) flow due to a constant pressure gradient, and (ii) flow due to due to a sinusoidal pressure gradient. The solutions for
... Show MoreThe Detour distance is one of the most common distance types used in chemistry and computer networks today. Therefore, in this paper, the detour polynomials and detour indices of vertices identified of n-graphs which are connected to themselves and separated from each other with respect to the vertices for n≥3 will be obtained. Also, polynomials detour and detour indices will be found for another graphs which have important applications in Chemistry.