In this work the concept of semi-generalized regular topological space was introduced and studied via semi generalized open sets. Many properties and results was investigated and studied, also it was shown that the quotient space of semi-generalized regular topological space is not, in general semi-generalizedspace.
The overlap between science and knowledge is a feature of the 21st century. This integration, which crosses the traditional boundaries between academic disciplines, has occurred because of the emergence of new needs and new professions. This overlap has overshadowed the arts in general and design in particular. The Design achievements have not been far away from the attempts of integration of more than one type or design application to produce new outputs unique in its functional and aesthetic character, including the terms of internal graphic design.
The researcher raises the question of the functional dimension of graphic design in the internal space, in order to answer it through the methodological framework, which includes th
... Show MoreThe purpose of this paper is to introduce and prove some coupled coincidence fixed point theorems for self mappings satisfying -contractive condition with rational expressions on complete partially ordered metric spaces involving altering distance functions with mixed monotone property of the mapping. Our results improve and unify a multitude of coupled fixed point theorems and generalize some recent results in partially ordered metric space. An example is given to show the validity of our main result.
In this paper, we shall introduce a new kind of Perfect (or proper) Mappings, namely ω-Perfect Mappings, which are strictly weaker than perfect mappings. And the following are the main results: (a) Let f : X→Y be ω-perfect mapping of a space X onto a space Y, then X is compact (Lindeloff), if Y is so. (b) Let f : X→Y be ω-perfect mapping of a regular space X onto a space Y. then X is paracompact (strongly paracompact), if Y is so paracompact (strongly paracompact). (c) Let X be a compact space and Y be a p*-space then the projection p : X×Y→Y is a ω-perfect mapping. Hence, X×Y is compact (paracompact, strongly paracompact) if and only if Y is so.
Often phenomena suffer from disturbances in their data as well as the difficulty of formulation, especially with a lack of clarity in the response, or the large number of essential differences plaguing the experimental units that have been taking this data from them. Thus emerged the need to include an estimation method implicit rating of these experimental units using the method of discrimination or create blocks for each item of these experimental units in the hope of controlling their responses and make it more homogeneous. Because of the development in the field of computers and taking the principle of the integration of sciences it has been found that modern algorithms used in the field of Computer Science genetic algorithm or ant colo
... Show MoreThe primary objective of this paper is to introduce a new concept of fibrewise topological spaces on D is named fibrewise multi- topological spaces on D. Also, we entroduce the concepts of multi-proper, fibrewise multi-compact, fibrewise locally multi-compact spaces, Moreover, we study relationships between fibrewise multi-compact (resp., locally multi-compac) space and some fibrewise multi-separation axioms.
In this paper we define and study new concepts of fibrewise topological spaces over B namely, fibrewise near topological spaces over B. Also, we introduce the concepts of fibrewise near closed and near open topological spaces over B; Furthermore we state and prove several Propositions concerning with these concepts.
Abstract. One of the fibrewise micro-topological space is one in which the topology is decided through a group of fibre bundles, in comparison to the usual case in normal, fibrewise topological space. The micro-topological spaces draw power from their ability to be used in descriptions of a wide range of mathematical objects. These can be used to describe the topology of a manifold or even the topology of a group. Apart from easy manipulation, the fibrewise micro-topological spaces yield various mathematical applications, but the one being mentioned here is the possibility for geometric investigation of space or group structure. In this essay, we shall explain what fibrewise micro-topological spaces are, indicate why they are useful in math
... Show MoreMost of the propositions, after the Arabic letter reached a position of integrity and proficiency, the calligrapher turned to the production of calligraphic formations in various aesthetic and expressive forms, investing the spiritual energies in what these calligraphic compositions show in artistic paintings. It carries a lot of meanings that are embodied in linear formations, and in order to reach these expressions and know the effective positions of space, this research is concerned with studying these technical treatments. The first chapter included the research problem, which included a question about the effectiveness of space in the linear painting, the importance of research and the temporal and spatial boundaries. As for the s
... Show MoreThis research talked about the importance of adjacent structures for informing the stage show for children. The researcher began from the importance of adjacent structures for informing the show to introduce the various and different proofs, on the level of creativity and artistic shape of the accomplishment over it’s shifts that contribute to formation the show and it's intellectual, artistic, technical and cognitive Marks that contribute in dynamism the interactive show and contact the idea that connect with the design and directional vision for the beauty and cognitive. Lead to the eager operation in attention, sensitive and attractive the child. The research consist of four chapters: The first chapter include methodological framewo
... Show MoreThe current research presents a study of the sculptural body in the space of the theatrical show through reviewing most of the ideas, propositions and workings presented by philosophers and directors within the space of the show, that there were various experiences of employing those spatial formations through the mediator (the space) based on sculpturing the body in achieving those formations, which contributed in building a symbolic picture of various structural connotations. That was formulated through the research chapters, which include the first chapter (the methodological framework) which consists of two sections. The first section (the duality of space formation and imaginations). The second section (sculptural body sequences in
... Show More