Preferred Language
Articles
/
7YZ7boYBIXToZYALyonl
Effect of friction stir welding parameters (rotation and transverse) speed on the transient temperature distribution in friction stir welding of AA 7020-t53

Three-dimensional nonlinear thermal numerical simulations are conducted for the friction stir welding (FSW) of AA 7020-T53. Three welding cases with tool (rotational and travel) speeds of 900rpm-40mm/min, 1400rpm-16mm/min and 1400rpm-40mm/in are analyzed. The objective is to study the variation of transient temperature in a friction stir welded plate of 5mm workpiece thickness. Based on the experimental records of transient temperature at several specific locations during the friction stir welding process for the AA 7020-T53, thermal numerical simulation is developed. The numerical results show that the temperature field in the FSW process is symmetrically distributed with respect to the welding line, increasing travel speed decreasing transient temperature distribution and increasing rotational speed increase temperature distribution. Experimental data illustrates that peak temperatures are higher on the advancing side than the retreating side. Comparison with the temperature measured by the thermocouples records shows that the results from the present numerical simulation have good agreement with the test data

Scopus
Publication Date
Wed Dec 13 2017
Journal Name
Al-khwarizmi Engineering Journal
Optimization of Friction Stir Welding Process Parameters of Dissimilar AA2024-T3 and AA7075-T73 Aluminum Alloys by Using Taguchi Method

The aim of present study is to determine the optimum parameters of friction stir welding process and known the most important parameter along with percentage contribution of each parameter which effect on tensile strength and joint efficiency of FS welded joint of  dissimilar aluminum alloys AA2024-T3 and AA7075-T73 of 3 mm thick plates by applied specific number of experiments using Taguchi method .AA2024 was placed on the advancing side and AA7075 on the retreating side. FSW was achieved under three different rotation speeds (898, 1200 and 1710) rpm, three different welding speeds (20, 45 and 69) mm\min , three different pin profiles (cylindrical, threaded cylindrical and cone) and tool tilt angle 2. Taguchi method w

... Show More
View Publication Preview PDF
Publication Date
Mon Jun 01 2015
Journal Name
Journal Of Engineering
Mechanical Properties Of AA 6061-T6 Aluminum Alloy Friction Stir Welds

The different parameters  on  mechanical  and  microstructural  properties  of  aluminium  alloy  6061-T6 Friction  stir-welded  (FSW) joints  were investigated in the  present study. Different welded  specimens were produced by employing variable rotating  speeds and welding speeds. Tensile strength of the produced joints  was tested at room  temperature and the the effecincy was assessed, it was 75% of the base metal at rotational speed 1500 rpm and weld speed 50 mm/min. Hardness of various zones of FSW welds are presented and  analyzed by  means of  brinell hardness number . Besides to thess tests the bending properties  investigat

... Show More
View Publication Preview PDF
Publication Date
Sun Apr 08 2018
Journal Name
Al-khwarizmi Engineering Journal
Microstructural Characterization and Mechanical Properties of Similar and Dissimilar Al Alloys Joined using Friction Stir Welding

The influence of pre- shot peening and welding parameters on mechanical and metallurgical properties of dissimilar and similar aluminum alloys AA2024-T3 and AA6061-T6 joints using friction stir welding have been studied. In this work, numbers of plates were equipped from sheet alloys in dimensions (150*50*6) mm then some of them were exposed to shot peening process before friction stir welding using steel ball having diameter 1.25 mm for period of 15 minutes. FSW joints were manufactured from plates at three welding speeds (28, 40, 56 mm/min) and welding speed 40mm/min was chosen at a rotating speed of 1400 rpm for welding the dissimilar pre- shot plates. Tow joints were made at rotational speed of 1000 rpm and welding speed of 40m/min f

... Show More
Crossref (1)
Crossref
View Publication Preview PDF
Publication Date
Fri Jun 01 2012
Journal Name
Journal Of Engineering
Experimental and numerical evaluation of friction stirs welding of AA 2024-W aluminum alloy

Friction Stir Welding (FSW) is one of the most effective solid states joining process and has numerous potential applications in many industries. A FSW numerical tool, based on ANSYS F.E software, has been developed. The amount of the heat gone to the tool dictates the life of the tool and the capability of the tool to produce a good processed zone. Hence, understanding the heat transfer aspect of the friction stir welding is extremely important for improving the process. Many research works were carried out to simulate the friction stir welding using various softwares to determine the temperature distribution for a given set of welding conditions. The objective of this research is to develop a finite element sim

... Show More
Crossref (2)
Crossref
View Publication Preview PDF
Publication Date
Thu Dec 01 2011
Journal Name
Aes-atema International Conference Series - Advances And Trends In Engineering Materials And Their Applications
Effect of new tool geometry on weld strength of AA2024 aluminum alloy plates welded by friction stir spot welding process

A new tool geometry was used to achieve friction stir spot welding (FSSW) in which the shoulder was designed separately from the rotating pin, and in order to examine weldment strength through the modified tool, a lap joints of AA2024 aluminum alloy plate 1 mm thick were welded successfully by using 6 mm pin diameter and varying process parameters (rotational speeds, tool nose geometry, and depth of tool penetration in the lower welded plate). Experimental tests indicate that the maximum average tensile shear load was 3100 N at the best selected condition. Microstructure examination and micro hardness test along the spot zones were investigated as well as measuring pin penetration load. Visual inspection of the welded spot surface shows a g

... Show More
Scopus
Publication Date
Thu Dec 23 2021
Journal Name
Iraqi Journal Of Science
Effect of Spheroidization Treatment on Friction Stir Processing of Al- 14 wt.% Si Alloy

    Three different rotational speeds (800, 1000 and 1250 rpm) and traverse speeds of (0.42 mm/sec) at a constant taped pin have been employed to produce the stir zones generated from friction stir processing (FSP) of near eutectic Al- 14 wt.% Si alloy. The processed samples were thoroughly analyzed macroscopically and microscopically. The as-cast microstructure of eutectic (α Al+ Si) and primary Si were fragmented to produce spheroidization of small size of Si and deformed matrix. The stir zones showed an increase in hardness from around 45-50 Hv for as-cast to 40-65 depending on the variables applied. All the processed samples were characterized by advanced and retreated regions with large single piping defects formed m

... Show More
Scopus Crossref
View Publication Preview PDF
Publication Date
Fri Jun 30 2017
Journal Name
Journal Of Engineering
Aluminium Matrix Composites Fabricated by Friction Stir Processing A Review

      Aluminum alloys widely use in production of the automobile and the aerospace because
they have low density, attractive mechanical properties with respect to their weight, better
corrosion and wear resistance, low thermal coefficient of expansion comparison with traditional
metals and alloys. Recently, researchers have shifted from single material to composite materials
to reduce weight and cost, improve quality, and high performance in structural materials.
Friction stir processing (FSP) has been successfully researched for manufacturing of metal
matrix composites (MMCs) and functional graded materials (FGMs), find out new possibilities
to chemically change the surfaces. It is shown th

... Show More
View Publication Preview PDF
Publication Date
Thu Dec 01 2011
Journal Name
Journal Of Engineering
An Experimental Investigation on Fatigue Properties of AA3003-H14 Aluminum alloy Friction Stir Welds

AA3003-H14 aluminum alloy plates were welded by friction stir welding and TIG welding.
Fatigue properties of the welded joints were evaluated based on the superior tensile properties for
FSW at 1500 rpm rotational speed and 80 mm/min welding speed. However, there is not much
information available on effect of welding parameters with evolution of fatigue life of friction stir
welds. The present study experimentally analyzed fatigue properties for base, FSW, and TIG welds
of AA 3003-H14 aluminum alloy. Fatigue properties of FSW joints were slightly lower than the
base metal and higher than TIG welding.

Crossref (1)
Crossref
View Publication Preview PDF
Publication Date
Sat Oct 01 2011
Journal Name
Journal Of Engineering
THE INFLUENCE OF TOOL GEOMETRY OF FRICTION STIR WELDS ON MECHANICAL PROPERTIES AND MICROSTRUCTURE OF 2218-T72 ALUMINUM ALLOY

Friction stir welding (FSW) process is an emerging solid state joining process in which the material that is being welded does not melt. This process uses a nonconsumable tool to generate frictional heat in the abutting surfaces. The welding parameters such as tool rotational speed, welding speed, axial force, etc., and tool pin profile play a major role in deciding the weld quality. In this investigation an attempt
has been made to understand the effect of tool pin profile and rotation diameter on microstructure and mechanical properties in aluminum alloy (2218-T72). Five different tool pin profiles (straight cylindrical, threaded cylindrical, triangular, square, and threaded cylindrical with flat), with three different rotation
d

... Show More
Crossref
View Publication Preview PDF
Publication Date
Wed Aug 15 2018
Journal Name
Al-khwarizmi Engineering Journal
Experimental Study the Effect of Tool Design on the Mechanical Properties of Bobbin Friction Stir Welded 6061-T6 Aluminum Alloy

Bobbin friction stir welding (BFSW) is a variant of the conventional friction stir welding (CFSW); it can weld the upper and lower surface of the work-piece in the same pass. This technique involves the bonding of materials without melting. In this work, the influence of tool design on the mechanical properties of welding joints of 6061-T6 aluminum alloy with 6.25 mm thickness produced by FSW bobbin tools was investigated and the best bobbin tool design was determined. Five different probe shapes (threaded straight cylindrical, straight cylindrical with 3 flat surfaces, straight cylindrical with 4 flat surfaces, threaded straight cylindrical with 3 flat surface and threaded straight cylindrical with 4 flat surfaces) with various dimensio

... Show More
Crossref (4)
Crossref
View Publication Preview PDF