Preferred Language
Articles
/
joe-413
Mechanical Properties Of AA 6061-T6 Aluminum Alloy Friction Stir Welds
...Show More Authors

The different parameters  on  mechanical  and  microstructural  properties  of  aluminium  alloy  6061-T6 Friction  stir-welded  (FSW) joints  were investigated in the  present study. Different welded  specimens were produced by employing variable rotating  speeds and welding speeds. Tensile strength of the produced joints  was tested at room  temperature and the the effecincy was assessed, it was 75% of the base metal at rotational speed 1500 rpm and weld speed 50 mm/min. Hardness of various zones of FSW welds are presented and  analyzed by  means of  brinell hardness number . Besides to thess tests the bending properties  investigated and showed good results in some specimen and not in onother the mamximum stress was 240 N/mm2 at rotational speed 1500 rpm and weld speed 50 mm/min , while the maximum stress at 1250 rpm and 75  mm/min 94 N/mm2 , hardness results shwed lower values in heat affected and nugget zones than the base metal with improving of hardness at 1500 rpm, 75 mm/min  .

 

       

View Publication Preview PDF
Quick Preview PDF
Publication Date
Wed Aug 15 2018
Journal Name
Al-khwarizmi Engineering Journal
Experimental Study the Effect of Tool Design on the Mechanical Properties of Bobbin Friction Stir Welded 6061-T6 Aluminum Alloy
...Show More Authors

Bobbin friction stir welding (BFSW) is a variant of the conventional friction stir welding (CFSW); it can weld the upper and lower surface of the work-piece in the same pass. This technique involves the bonding of materials without melting. In this work, the influence of tool design on the mechanical properties of welding joints of 6061-T6 aluminum alloy with 6.25 mm thickness produced by FSW bobbin tools was investigated and the best bobbin tool design was determined. Five different probe shapes (threaded straight cylindrical, straight cylindrical with 3 flat surfaces, straight cylindrical with 4 flat surfaces, threaded straight cylindrical with 3 flat surface and threaded straight cylindrical with 4 flat surfaces) with various dimensio

... Show More
View Publication Preview PDF
Crossref (4)
Crossref
Publication Date
Thu Dec 01 2011
Journal Name
Journal Of Engineering
An Experimental Investigation on Fatigue Properties of AA3003-H14 Aluminum alloy Friction Stir Welds
...Show More Authors

AA3003-H14 aluminum alloy plates were welded by friction stir welding and TIG welding.
Fatigue properties of the welded joints were evaluated based on the superior tensile properties for
FSW at 1500 rpm rotational speed and 80 mm/min welding speed. However, there is not much
information available on effect of welding parameters with evolution of fatigue life of friction stir
welds. The present study experimentally analyzed fatigue properties for base, FSW, and TIG welds
of AA 3003-H14 aluminum alloy. Fatigue properties of FSW joints were slightly lower than the
base metal and higher than TIG welding.

View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Sat Oct 01 2011
Journal Name
Journal Of Engineering
THE INFLUENCE OF TOOL GEOMETRY OF FRICTION STIR WELDS ON MECHANICAL PROPERTIES AND MICROSTRUCTURE OF 2218-T72 ALUMINUM ALLOY
...Show More Authors

Friction stir welding (FSW) process is an emerging solid state joining process in which the material that is being welded does not melt. This process uses a nonconsumable tool to generate frictional heat in the abutting surfaces. The welding parameters such as tool rotational speed, welding speed, axial force, etc., and tool pin profile play a major role in deciding the weld quality. In this investigation an attempt
has been made to understand the effect of tool pin profile and rotation diameter on microstructure and mechanical properties in aluminum alloy (2218-T72). Five different tool pin profiles (straight cylindrical, threaded cylindrical, triangular, square, and threaded cylindrical with flat), with three different rotation
d

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri Oct 20 2023
Journal Name
Advances In Science And Technology Research Journal
Impact of TIG Welding Parameters on the Mechanical Properties of 6061-T6 Aluminum Alloy Joints
...Show More Authors

View Publication
Scopus (2)
Scopus Clarivate Crossref
Publication Date
Fri Jun 01 2012
Journal Name
Journal Of Engineering
Experimental and numerical evaluation of friction stirs welding of AA 2024-W aluminum alloy
...Show More Authors

Friction Stir Welding (FSW) is one of the most effective solid states joining process and has numerous potential applications in many industries. A FSW numerical tool, based on ANSYS F.E software, has been developed. The amount of the heat gone to the tool dictates the life of the tool and the capability of the tool to produce a good processed zone. Hence, understanding the heat transfer aspect of the friction stir welding is extremely important for improving the process. Many research works were carried out to simulate the friction stir welding using various softwares to determine the temperature distribution for a given set of welding conditions. The objective of this research is to develop a finite element sim

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Thu Dec 01 2011
Journal Name
Journal Of Engineering
EFFECT OF TOOL SHOULDER DIAMETER ON THE MECHANICAL PROPERTIES OF 1200 ALUMINUM FRICTION STIR SPOT WELDING
...Show More Authors

A friction stir spot welding (FSSW) process is an emerging solid state joining process in which the material that is being welded does not melt. In this investigation an attempt has been made to understand the effect of tool shoulder diameter on the mechanical properties of the joint. For this purpose four welding tools diameter (10,13, 16 and 19) mm at constant preheating time and plunging time were used to carry
out welding process. Effect of tool diameter on mechanical properties of welded joints was investigated using shear stress test and Microhardness of joint which welded was studied. Based on the stir welding experiments conducted in this study the results show that aluminum alloy (1200) can be welded using (FSSW) process with

... Show More
View Publication Preview PDF
Crossref (4)
Crossref
Publication Date
Sun Jan 01 2017
Journal Name
Proceedings - European Metallurgical Conference, Emc 2017
Friction stir welding of aluminum alloy AA2024-T351 with OFHC copper
...Show More Authors

Scopus
Publication Date
Thu Jun 30 2011
Journal Name
Al-khwarizmi Engineering Journal
Comparative Study of the Mechanical Properties of (FS) and MIG Welded Joint in (AA7020-T6) Aluminum Alloy
...Show More Authors

A comprehensive practical study of typical mechanical properties of welded Aluminum alloy AA7020-T6 (Al-Mg-Zn), adopting friction stir welding (FSW) technique and conventional metal inert gas (MIG) technique, is well achieved in this work for real comparison purposes. The essences of present output findings were concentrated upon the FSW samples in respect to that MIG ones which can be summarized in the increase of the ultimate tensile strength for FSW was 340 MPa while it was 232 MPa for MIG welding, where it was for base metal 400 MPa. The minimum microhardness value for FSW was recorded at HAZ and it was 133 HV0.05 while it was 70 HV0.05 for MIG weld at the welding metal. The FSW produce 2470 N higher than MIG welding in the bending t

... Show More
View Publication Preview PDF
Publication Date
Wed May 01 2019
Journal Name
Journal Of Engineering
Optimization of Friction Stir Welding Process Parameters to joint 7075-T6 Aluminium Alloy by Utilizing Taguchi Technique
...Show More Authors

In this study, a 3 mm thickness 7075-T6 aluminium alloy sheet was used in the friction stir welding process. Using the design of experiment to reduce the number of experiments and to obtain the optimum friction stir welding parameters by utilizing Taguchi technique based on the ultimate tensile test results. Orthogonal array of L9 (33) was used based on three numbers of the parameters and three levels for each parameter, where shoulder-workpiece interference depth (0.20, 0.25, and 0.3) mm, pin geometry (cylindrical thread flat end, cylindrical thread with 3 flat round end, cylindrical thread round end), and thread pitch (0.8, 1, and 1.2) mm) this technique executed by Minitab 17 software. The results showed th

... Show More
View Publication Preview PDF
Crossref (3)
Crossref
Publication Date
Tue Feb 18 2020
Journal Name
Modelling And Simulation In Engineering
Temperature and Stress Evaluation during Three Different Phases of Friction Stir Welding of AA 7075-T651 Alloy
...Show More Authors

The current study performs an explicit nonlinear finite element simulation to predict temperature distribution and consequent stresses during the friction stir welding (FSW) of AA 7075-T651 alloy. The ABAQUS® finite element software was used to model and analyze the process steps that involve plunging, dwelling, and traverse stages. Techniques such as Arbitrary Lagrangian–Eulerian (ALE) formulation, adaptive meshing, and computational feature of mass scaling were utilized to simulate sequence events during the friction stir welding process. The contact between the welding tool and workpiece was modelled through applying Coulomb’s friction model with a nonlinear friction coefficient value. Also, the model considered the effect of nonlin

... Show More
View Publication Preview PDF
Scopus (36)
Crossref (19)
Scopus Clarivate Crossref