Three-dimensional nonlinear thermal numerical simulations are conducted for the friction stir welding (FSW) of AA 7020-T53. Three welding cases with tool (rotational and travel) speeds of 900rpm-40mm/min, 1400rpm-16mm/min and 1400rpm-40mm/in are analyzed. The objective is to study the variation of transient temperature in a friction stir welded plate of 5mm workpiece thickness. Based on the experimental records of transient temperature at several specific locations during the friction stir welding process for the AA 7020-T53, thermal numerical simulation is developed. The numerical results show that the temperature field in the FSW process is symmetrically distributed with respect to the welding line, increasing travel speed decreasing transient temperature distribution and increasing rotational speed increase temperature distribution. Experimental data illustrates that peak temperatures are higher on the advancing side than the retreating side. Comparison with the temperature measured by the thermocouples records shows that the results from the present numerical simulation have good agreement with the test data
Aluminum Metal Matrix Composites (ALMMCs) was prepared by using stir casting technique for AA 7075 aluminum alloy as a matrix reinforced with SiC particles at various percentages (3, 6, 9 and 12 wt. % ) and 75µm in grain size. The prepared composite material can be used for many applications such as aerospace, automobiles and many industrial sectors. Abrasive wear test was carried out by two stages: the first stage was done by changing the emery papers at various grit sizes 180, 320, 500, and 1000µm with constant applied load 15N. While the second stage was carried out by changing the applied loads 5, 10, 15, 20 and 25N with constant emery paper at 320 µm grit size. Microstructure examination, hardness test and roughn
... Show MoreIn this work, results of a mathematical analysis of the role of workpiece preheating in laser keyhole welding were presented. This analysis considered the steady-state welding as well as certain range of boundary conditions over which preheating effect would be indicated. This work is an attempt to interpret the role of preheating to increase welding depth and perform keyhole welding with high quality using physical and thermal properties of steel alloys.
Abstract
Friction stir welding is a relatively new joining process, which involves the joining of metals without fusion or filler materials. In this study, the effect of welding parameters on the mechanical properties of aluminum alloys AA2024-T351 joints produced by FSW was investigated.
Different ranges of welding parameters, as input factors, such as welding speed (6 - 34 mm/min) and rotational speed (725 - 1235 rpm) were used to obtain their influences on the main responses, in terms of elongation, tensile strength, and maximum bending force. Experimental measurements of main responses were taken and analyzed using DESIGN EXPERT 8 experimental design software which was used to develop t
... Show MoreThe present research investigates joints welding of 304L austenitic stainless steel using metal inert gas (MIG) welding method. The research explores the effect of process parameters (arc voltage, wire feed rate, and electrode wire diameter) on the mechanical properties of stainless steel. The above variables are varied respectively with 18.5, 19, 19.5 V, 116, 127, 137 mm/s, and 0.8, 1, 1.2 mm, with E308L as a filler electrode. The design matrix of the experiments was determined using the design of experiment (DOE) program Minitab 17 based on the levels of input elements used. The Taguchi orthogonal matrix methodology (Taguchi) technique was used to develop some empirical analysis for the maximum tensile strength and proper surface
... Show MoreThe objective of this paper was to study the laser spot welding process of low carbon steel sheet. The investigations were based on analytical and finite element analyses. The analytical analysis was focused on a consistent set of equations representing interaction of the laser beam with materials. The numerical analysis based on 3-D finite element analysis of heat flow during laser spot welding taken into account the temperature dependence of the physical properties and latent heat of transformations using ANSYS code V.10.0 to simulate the laser welding process. The effect of laser operating parameters on the results of the temperature profile were studied in addition to the effect on thermal stresses and dimensions of the laser w
... Show MoreThis paper represents an experimentalattempt to predict the influence of CO2-MAG welding variables on the shape factors of the weld joint geometry. Theinput variables were welding arc voltage, wire feeding speed and gas flow rate to investigate their effects on the shape factorsof the weld joint geometry in terms of weld joint dimensions (bead width, reinforcement height, and penetration). Design of experiment with response surface methodology technique was employed to buildmathematical models for shape factors in terms of the input welding variables. Thepredicted models were found quadratic type and statistically checked by ANOVA analysis for adequacy purpose. Also, numerical and graphical optimizations were carried out
... Show MoreSubmerged arc welding (SAW) process is an essential metal joining processes in industry. The quality of weld is a very important working aspect for the manufacturing and construction industries, the challenges are made optimal process environment. Design of experimental using Taguchi method (L9 orthogonal array (OA)) considering three SAW parameter are (welding current, arc voltage and welding speed) and three levels (300-350-400 Amp. , 32-36-40 V and 26-28-30 cm/min). The study was done on SAW process parameters on the mechanical properties of steel type comply with (ASTM A516 grade 70). Signal to Noise ratio (S/N) was computed to calculate the optimal process parameters. Percentage contributions of each parameter are validated by using an
... Show MoreAbstract
This paper is an experimental work to determinate the effect of welding velocity and formed arc energy for CO2-MAG fusion weld pool. The input parameters (arc voltage, wire feed speed and gas flow rate) were investigated to find their effects on the weld joint efficiency. Design of experiment with response surface methodology technique was used to build empirical mathematical models for welding velocity and arc energy in term of the input welding parameters. The predicted quadratic models were statistically checked for adequacy purpose by ANOVA analysis. Additionally, numerical optimization was conducted to obtain the optimum values for welding velocity and arc energy. A good agree
... Show More