We introduce a new class of harmonici multivalent functions define by generalized Rucheweyh derivative operator. We also obtain several interesting propertiesi such as sharp coefficienit estimates, distortioni bound, extreme points, Hadamardi product and other several results. Derivative; extreme points.
This work is devoted to define new generalized gamma and beta functions involving the recently suggested seven-parameter Mittag-Leffler function, followed by a review of all related special cases. In addition, necessary investigations are affirmed for the new generalized beta function, including, Mellin transform, differential formulas, integral representations, and essential summation relations. Furthermore, crucial statistical application has been realized for the new generalized beta function.
In this effort, we define a new class of fractional analytic functions containing functional parameters in the open unit disk. By employing this class, we introduce two types of fractional operators, differential and integral. The fractional differential operator is considered to be in the sense of Ruscheweyh differential operator, while the fractional integral operator is in the sense of Noor integral. The boundedness and compactness in a complex Banach space are discussed. Other studies are illustrated in the sequel.
The ground state density distributions and electron scattering Coulomb form factors of Helium (4,6,8He) and Phosphorate (27,31P) isotopes are investigated in the framework of nuclear shell model. For stable (4He) and (31P) nuclei, the core and valence parts are studied through Harmonic-oscillator (HO) and Hulthen potentials. Correspondingly, for exotic (6,8He) and (27P) nuclei, the HO potential is applied to the core parts only, while the Hulthen potential is applied to valence parts. The parameters for HO and Hulthen are chosen to reproduce the available experimental size radii for all nuclei under study. Finally, the CO component of electron scattering charge form factors are also investigated. Unfortunately, there is no
... Show MoreThe wave functions of converted harmonic-oscillator in local scaling transformations are employed to evaluate charge distributions and elastic charge electron scattering form structures for 6,7Li, 9Be, 14,15N and 16O nuclei. The nuclear shell-model was fulfilled using Warburton-Brown psd-shell (WBP) interaction with truncation in model space. Very good agreements with the experimental data were obtained for the aforementioned quantities.
The tests that measure special strength defined by speed contributes a great deal in evaluating the players' weaknesses and strengths so as to aid coaches judge their players according to scientific and objective measurements. The problem of the study lies in answering the following question : is there a test that measures legs' vertical strength defined by speed especially for youth basketball players? The aim of the research was to construct and standardize a test for measuring legs' vertical strength defined by speed in youth basketball. The subjects of the study were 74 youth basketball players from Baghdad. The researchers concluded that the test measures leg's vertical strength defined by speed for youth basketball players as well as
... Show MoreRecently, numerous the generalizations of Hurwitz-Lerch zeta functions are investigated and introduced. In this paper, by using the extended generalized Hurwitz-Lerch zeta function, a new Salagean’s differential operator is studied. Based on this new operator, a new geometric class and yielded coefficient bounds, growth and distortion result, radii of convexity, star-likeness, close-to-convexity, as well as extreme points are discussed.