Solar photovoltaic (PV) has many environmental benefits and it is considered to be a practical alternative to traditional energy generation. The electrical conversion efficiency of such systems is inherently limited due to the relatively high thermal resistance of the PV components. An approach for intensifying electrical and thermal production of air-type photovoltaic thermal (PVT) systems via applying a combination of fins and surface zigzags was proposed in this paper. This research study aims to apply three performance enhancers: case B, including internal fins; case C, back surface zigzags; and case D, combinations of fins and surface zigzags; whereas the baseline smooth duct represents case A. A 2D, steady-state simulation model that took into account the impact of the convective flow of air circulating inside the PVT system in addition to radiative and convective heat losses from the front PV surface was developed and validated via previous tests. The results revealed that, under the same volume requirements, the application of surface zigzags is preferred for airflow rates of 0.06 kg/s or less, whereas the introduction of fins is preferred for higher airflow rates. The results also revealed that, of the three cases considered, the introduction of the fin–surface zigzag combination is the most effective and has the potential to improve the electrical and thermal efficiency by ~26% and 3%, respectively.
In this study, the energy charging mechanism is mathematically modeled to determine the impact of design modifications on the thermofluidic behavior of a phase change material (PCM) filled in a triplex tube containment geometry. The surface area of the middle tube, where the PCM is placed, is supported by single or multi-internal frustum tubes in vertical triplex tubes to increase the performance of the heating and cooling of the system. In addition to the ordinary straight triplex tubes, three more scenarios are considered: (1) changing the middle tube to the frustum tube, (2) changing the inner tube to the frustum tube, and (3) changing both the internal and central tubes to the frustum tubes. The impact of adopting the tube desig
... Show MoreThis work is concerned with designing two types of controllers, a PID and a Fuzzy PID, to be used
for flying and stabilizing a quadcopter. The designed controllers have been tuned, tested, and
compared using two performance indices which are the Integral Square Error (ISE) and the Integral
Absolute Error (IAE), and also some response characteristics like the rise time, overshoot, settling
time, and the steady state error. To try and test the controllers, a quadcopter mathematical model has
been developed. The model concentrated on the rotational dynamics of the quadcopter, i.e. the roll,
pitch, and yaw variables. The work has been simulated with “MATLAB”. To make testing the
simulated model and the controllers m
Sewer system plays an essential task in urban cities by protecting public health and the environment. The operation, maintenance, and rehabilitation of this network have to be sustainable and scientifically. For this purpose, it is crucial to support operators, decision makers and municipalities with performance evaluation procedure that is based on operational factors. In this paper, serviceability and performance indicator (PI) principles are employed to propose methodology comprising two enhanced PI curves that can be used to evaluate the individual sewers depending on operational factors such as flowing velocity and wastewater level in the sewers. To test this methodology; a case study of al-Rusafa in Baghdad city is
... Show MoreSewer system plays an indispensable task in urban cities by protecting public health and the environment. The operation, maintenance, and rehabilitation of this network have to be in a sustainable and scientific manner. For this purpose, it is important to support operators, decision makers and municipalities with performance evaluation procedure that is based on operational factors. In this paper, serviceability and performance indicator (PI) principles are employed to propose methodology comprising two enhanced PI curves that can be used to evaluate the individual sewers depending on operational factors such as flowing velocity and wastewater level in the sewers. In order to test this methodology; a case study of al-Ru
... Show MoreThe performance measures and traditional methods used in management accounting is no longer able to provide convenient to evaluate the performance of economic units in the modern manufacturing environment information، and so this information is more important and feasibility must be Mistohat of all the company's activities and functions، and it is a problem Find the inadequacy of information management accounting that contribute to meet the needs of the upper levels of management to cope with the problems resulting from the increased size and complexity of the business، and lack of management accounting information and methods used in the performance evaluation، which reflected negatively on the value chain activities and then on the
... Show MoreChilled ceilings systems offer potential for overall capital savings. The main aim of the present research is to investigate the thermal performance of the indirect contact closed circuit cooling tower, ICCCCT used with chilled ceiling, to gain a deeper knowledge in this important field of engineering which has been traditionally used in various industrial & HVAC systems. To achieve this study, experimental work were implemented for the ICCCCT use with chilled ceiling. In this study the thermal performances of closed wet cooling tower use with chilled ceiling is experimentally and theoretically investigated. Different experimental tests were conducted by varying the controlling parameters to investigate their effects
... Show MoreIn this paper the effect of mixing TiO2 nanoparticles with epoxy resin is studied. The TiO2 nanoparticles would be synthesis and characterized by scanning electron microscopy (SEM), XRD FTIR, for two particle sizes of 50 and 25 nm. The thermal conductivity is measured with and without composite epoxy resin; the results showed that the thermal conductivity was increased as nanoparticle concentration increased too. The thermal conductivity was increased as particle size decreased.
Arrested precipitation methode used to synthesize CuInSe2 (CIS) nanocrystals were added to a hot solvent with organic capping ligands to control nanocrystal formation and growth. CIS thin films deposited onto Soda-Lima Glass (SLG) substrate by spray-coat, then selenized in Ar-atmosphere to form CIS thin films. PVs were made with power conversion efficiencies of 0.631% as-deposited and 0.846% after selenization, for Mo coated, under AM 1.5 illuminations. (XRD) and (EDX) it is evident that CIS have chalcopyrite structure as the major phase with a preferred orientation along (112) direction and Cu:In:Se nanocrystals is nearly 1:1:2 atomic ratio.