Aspect-based sentiment analysis is the most important research topic conducted to extract and categorize aspect-terms from online reviews. Recent efforts have shown that topic modelling is vigorously used for this task. In this paper, we integrated word embedding into collapsed Gibbs sampling in Latent Dirichlet Allocation (LDA). Specifically, the conditional distribution in the topic model is improved using the word embedding model that was trained against (customer review) training dataset. Semantic similarity (cosine measure) was leveraged to distribute the aspect-terms to their related aspect-category cognitively. The experiment was conducted to extract and categorize the aspect terms from SemEval 2014 dataset.
The possibility of using the magnetic field technique in prevention of forming scales in heat exchangers pipes using
hard water in heat transfer processes, also the studying the effective and controllable parameters on the mechanism of
scale formation.
The new designed heat exchanger experimental system was used after carrying out the basic process designs of the
system. This system was used to study the effect of the temperature (40-90 °C) and water flow rate (0.6-1.2 L/min) on
the total hardness with time as a function of precipitation of hardness salts from water and scale formation.
Different magnetic field designs in the heat exchanger experimental system were used to study the effect of magnetic
field design a
As one type of resistance furnace, the electrical tube furnace (ETF) typically experiences input noise, measurement noise, system uncertainties, unmodeled dynamics and external disturbances, which significantly degrade its temperature control performance. To provide precise, and robust temperature tracking performance for the ETF, a robust composite control (RCC) method is proposed in this paper. The overall RCC method consists of four elements: First, the mathematical model of the ETF system is deduced, then a state feedback control (SFC) is constructed. Third, a novel disturbance observer (DO) is designed to estimate the lumped disturbance with one observer parameter. Moreover, the stability of the closed loop system including controller
... Show More|
Ground Penetrating Radar (GPR) is a nondestructive geophysical technique that uses electromagnetic waves to evaluate subsurface information. A GPR unit emits a short pulse of electromagnetic energy and is able to determine the presence or absence of a target by examining the reflected energy from that pulse. GPR is geophysical approach that use band of the radio spectrum. In this research the function of GPR has been summarized as survey different buried objects such as (Iron, Plastic(PVC), Aluminum) in specified depth about (0.5m) using antenna of 250 MHZ, the response of the each object can be recognized as its shapes, this recognition have been performed using image processi |
Thirty local fungal isolates according to Aspergillus niger were screened for Inulinase production on synthetic solid medium depending on inulin hydrolysis appear as clear zone around fungal colony. Semi-quantitative screening was performed to select the most efficient isolate for inulinase production. the most efficient isolate was AN20. The optimum condition for enzyme production from A. niger isolate was determined by busing a medium composed of sugar cane moisten with corn steep liquor 5;5 (v/w) at initial pH 5.0 for 96 hours at 30 0C . Enzyme productivity was tested for each of the yeast Kluyveromyces marxianus, the fungus A. niger AN20 and for a mixed culture of A. niger and K. marxianus. The productivity of A. niger gave the highest
... Show MoreEffective decision-making process is the basis for successfully solving any engineering problem. Many decisions taken in the construction projects differ in their nature due to the complex nature of the construction projects. One of the most crucial decisions that might result in numerous issues over the course of a construction project is the selection of the contractor. This study aims to use the ordinal priority approach (OPA) for the contractor selection process in the construction industry. The proposed model involves two computer programs; the first of these will be used to evaluate the decision-makers/experts in the construction projects, while the second will be used to formul
This paper reports an experimental study of welding of dissimilar materials between transparent Polymethylmethacrylate (PMMA) and stainless steel 304 sheets using a pulsed mode Nd:YAG laser. The process was carried out for two cases; laser transmission joining (LTJ) and conduction joining (CJ). The former is achieved when the joint is irradiated from the polymer side and the latter when the joint is irradiated from the opposite side (metal side). The light and process parameters represented by the peak power (Pp), pulse duration (τ), pulse repetition rate (PRR), scanning speed (ν) and pulse shape have a significant effect on the joint strength (Fb), joint bead width (b), joint quality and appearance. The optimum parameters were determined
... Show MoreClinical keratoconus (KCN) detection is a challenging and time-consuming task. In the diagnosis process, ophthalmologists must revise demographic and clinical ophthalmic examinations. The latter include slit-lamb, corneal topographic maps, and Pentacam indices (PI). We propose an Ensemble of Deep Transfer Learning (EDTL) based on corneal topographic maps. We consider four pretrained networks, SqueezeNet (SqN), AlexNet (AN), ShuffleNet (SfN), and MobileNet-v2 (MN), and fine-tune them on a dataset of KCN and normal cases, each including four topographic maps. We also consider a PI classifier. Then, our EDTL method combines the output probabilities of each of the five classifiers to obtain a decision b
Autism Spectrum Disorder, also known as ASD, is a neurodevelopmental disease that impairs speech, social interaction, and behavior. Machine learning is a field of artificial intelligence that focuses on creating algorithms that can learn patterns and make ASD classification based on input data. The results of using machine learning algorithms to categorize ASD have been inconsistent. More research is needed to improve the accuracy of the classification of ASD. To address this, deep learning such as 1D CNN has been proposed as an alternative for the classification of ASD detection. The proposed techniques are evaluated on publicly available three different ASD datasets (children, Adults, and adolescents). Results strongly suggest that 1D
... Show MoreMalaysia's growing population and industrialisation have increased solid waste accumulation in landfills, leading to a rise in leachate production. Leachate, a highly contaminated liquid from landfills, poses environmental risks and affects water quality. Conventional leachate treatments are costly and time-consuming due to the need for additional chemicals. Therefore, the Electrocoagulation process could be used as an alternative method. Electrocoagulation is an electrochemical method of treating water by eliminating impurities by applying an electric current. In the present study, the optimisation of contaminant removal was investigated using Response Surface Methodology. Three parameters were considered for optimisation: the curr
... Show MoreObjective: The aim of this study was to compare the marginal microleakage between bulk-fill, preheated bulk-fill, and bulk-fill flowable composite resins above and below cemento-enamel junction (CEJ) using micro-computed tomography. Methods: Sixty freshly extracted premolar teeth were prepared with a slot shaped cavities of a total of 120 Class II: 3mm (bucco-lingual), 2mm (mesio-distal) with mesial-gingival margin located 1mm coronal to CEJ, and distal gingival margin located 1mm apical to the CEJ. The samples were randomly divided into two main groups according to the restorative material (Tetric EvoCeram and 3M Filtek), and each group was further sub-divided into three subgroups according to the consistency (bulk fill, preheated bulk fil
... Show More