Preferred Language
Articles
/
3Bb8zIcBVTCNdQwCJGHd
Two efficient methods for solving Schlömilch’s integral equation
...Show More Authors
Purpose

In this paper, the exact solutions of the Schlömilch’s integral equation and its linear and non-linear generalized formulas with application are solved by using two efficient iterative methods. The Schlömilch’s integral equations have many applications in atmospheric, terrestrial physics and ionospheric problems. They describe the density profile of electrons from the ionospheric for awry occurrence of the quasi-transverse approximations. The paper aims to discuss these issues.

Design/methodology/approach

First, the authors apply a regularization method combined with the standard homotopy analysis method to find the exact solutions for all forms of the Schlömilch’s integral equation. Second, the authors implement the regularization method with the variational iteration method for the same purpose. The effectiveness of the regularization-Homotopy method and the regularization-variational method is shown by using them for several illustrative examples, which have been solved by other authors using the so-called regularization-Adomian method.

Findings

The implementation of the two methods demonstrates the usefulness in finding exact solutions.

Practical implications

The authors have applied the developed methodology to the solution of the Rayleigh equation, which is an important equation in fluid dynamics and has a variety of applications in different fields of science and engineering. These include the analysis of batch distillation in chemistry, scattering of electromagnetic waves in physics, isotopic data in contaminant hydrogeology and others.

Originality/value

In this paper, two reliable methods have been implemented to solve several examples, where those examples represent the main types of the Schlömilch’s integral models. Each method has been accompanied with the use of the regularization method. This process constructs an efficient dealing to get the exact solutions of the linear and non-linear Schlömilch’s integral equation which is easy to implement. In addition to that, the accompanied regularization method with each of the two used methods proved its efficiency in handling many problems especially ill-posed problems, such as the Fredholm integral equation of the first kind.

Crossref
View Publication
Publication Date
Sun Dec 07 2014
Journal Name
Baghdad Science Journal
The Modified Quadrature Method for solving Volterra Linear Integral Equations
...Show More Authors

In this paper the modified trapezoidal rule is presented for solving Volterra linear Integral Equations (V.I.E) of the second kind and we noticed that this procedure is effective in solving the equations. Two examples are given with their comparison tables to answer the validity of the procedure.

View Publication Preview PDF
Crossref
Publication Date
Fri May 01 2020
Journal Name
Journal Of Physics: Conference Series
New Approach for Solving (1+1)-Dimensional Differential Equation
...Show More Authors

View Publication Preview PDF
Scopus (18)
Crossref (6)
Scopus Crossref
Publication Date
Wed Jan 01 2020
Journal Name
International Journal Of Modern Mathematical Sciences
Coupled Laplace-Decomposition Method for Solving Klein- Gordon Equation
...Show More Authors

In this paper, we consider a new approach to solve type of partial differential equation by using coupled Laplace transformation with decomposition method to find the exact solution for non–linear non–homogenous equation with initial conditions. The reliability for suggested approach illustrated by solving model equations such as second order linear and nonlinear Klein–Gordon equation. The application results show the efficiency and ability for suggested approach.

Preview PDF
Publication Date
Mon Sep 23 2019
Journal Name
Baghdad Science Journal
New Approach for Solving Three Dimensional Space Partial Differential Equation
...Show More Authors

This paper presents a new transform method to solve partial differential equations, for finding suitable accurate solutions in a wider domain. It can be used to solve the problems without resorting to the frequency domain. The new transform is combined with the homotopy perturbation method in order to solve three dimensional second order partial differential equations with initial condition, and the convergence of the solution to the exact form is proved. The implementation of the suggested method demonstrates the usefulness in finding exact solutions. The practical implications show the effectiveness of approach and it is easily implemented in finding exact solutions.

       Finally, all algori

... Show More
View Publication Preview PDF
Scopus (22)
Crossref (10)
Scopus Clarivate Crossref
Publication Date
Wed Jan 01 2020
Journal Name
Arab Journal Of Basic And Applied Sciences
Reliable iterative methods for 1D Swift–Hohenberg equation
...Show More Authors

View Publication
Crossref (5)
Crossref
Publication Date
Sun Sep 01 2024
Journal Name
Partial Differential Equations In Applied Mathematics
Perturbation iteration transform method for solving fractional order integro-differential equation
...Show More Authors

View Publication
Scopus (3)
Crossref (3)
Scopus Crossref
Publication Date
Fri May 01 2020
Journal Name
Journal Of Physics: Conference Series
New Approach for Solving Two Dimensional Spaces PDE
...Show More Authors
Abstract<p>In this paper, new approach based on coupled Laplace transformation with decomposition method is proposed to solve type of partial differential equation. Then it’s used to find the accurate solution for heat equation with initial conditions. Four examples introduced to illustrate the accuracy, efficiency of suggested method. The practical results show the importance of suggested method for solve differential equations with high accuracy and easy implemented.</p>
View Publication
Scopus (19)
Crossref (7)
Scopus Crossref
Publication Date
Wed Jun 01 2016
Journal Name
International Educational Scientific Research Journal
EFFICIENTMETHODSOFIRISRECOGNITION
...Show More Authors

Identification by biological features gets tremendous importance with the increasing of security systems in society. Various types of biometrics like face, finger, iris, retina, voice, palm print, ear and hand geometry, in all these characteristics, iris recognition gaining attention because iris of every person is unique, it never changes during human lifetime and highly protected against damage. This unique feature shows that iris can be good security measure. Iris recognition system listed as a high confidence biometric identification system; mostly it is divide into four steps: Acquisition, localization, segmentation and normalization. This work will review various Iris Recognition systems used by different researchers for each recognit

... Show More
Preview PDF
Publication Date
Mon Jan 20 2020
Journal Name
Kuwait Journal Of Science
Three iterative methods for solving Jeffery-Hamel flow problem
...Show More Authors

In this article, the nonlinear problem of Jeffery-Hamel flow has been solved analytically and numerically by using reliable iterative and numerical methods. The approximate solutions obtained by using the Daftardar-Jafari method namely (DJM), Temimi-Ansari method namely (TAM) and Banach contraction method namely (BCM). The obtained solutions are discussed numerically, in comparison with other numerical solutions obtained from the fourth order Runge-Kutta (RK4), Euler and previous analytic methods available in literature. In addition, the convergence of the proposed methods is given based on the Banach fixed point theorem. The results reveal that the presented methods are reliable, effective and applicable to solve other nonlinear problems.

... Show More
View Publication Preview PDF
Publication Date
Thu Jun 29 2023
Journal Name
Wasit Journal For Pure Sciences
Suitable Methods for Solving COVID-19 Model in Iraq
...Show More Authors

Because the Coronavirus epidemic spread in Iraq, the COVID-19 epidemic of people quarantined due to infection is our application in this work. The numerical simulation methods used in this research are more suitable than other analytical and numerical methods because they solve random systems. Since the Covid-19 epidemic system has random variables coefficients, these methods are used. Suitable numerical simulation methods have been applied to solve the COVID-19 epidemic model in Iraq. The analytical results of the Variation iteration method (VIM) are executed to compare the results. One numerical method which is the Finite difference method (FD) has been used to solve the Coronavirus model and for comparison purposes. The numerical simulat

... Show More
View Publication Preview PDF
Crossref