The significance fore supra topological spaces as a subject of study cannot be overstated, as they represent a broader framework than traditional topological spaces. Numerous scholars have proposed extension to supra open sets, including supra semi open sets, supra per open and others. In this research, a notion for ⱨ-supra open created within the generalizations of the supra topology of sets. Our investigation involves harnessing this style of sets to introduce modern notions in these spaces, specifically supra ⱨ - interior, supra ⱨ - closure, supra ⱨ - limit points, supra ⱨ - boundary points and supra ⱨ - exterior of sets. It has been examining the relationship with supra open. The research was also enriched with many of characteristics of each concept. Building upon this set classification, we introduced several kinds of maps like supra ⱨ - continuous, supra ⱨ - open, supra ⱨ - tentative, supra ⱨ -globally and supra ⱨ - homeomorphism. Additionally, we have proven a collection of useful relationships for the aforementioned of functions. Furthermore, the research was enhanced with illustrative and refuting examples.
The pharmacy is the face for the health buildings and hospitals, The linking professional relationships and functional, it is been from the important places that most people go it, so according to that we must format its interior design in form that suitable with the need of most people use it or work in it, and this the search goal, dashing from the search subject which to hide finding designer treatment for the pharmacies interior spaces, to give share in the functional improvement performance or aesthetic. We define the search goals to share in educate the pharmacist in the effect of interior design for improvement of interior environment, in addition to the search consider as designer trying add to the other trying the interior desig
... Show MoreIn this paper we define and study new concepts of fibrewise topological spaces over B namely, fibrewise near compact and fibrewise locally near compact spaces, which are generalizations of well-known concepts near compact and locally near compact topological spaces. Moreover, we study relationships between fibrewise near compact (resp., fibrewise locally near compact) spaces and some fibrewise near separation axioms.
In this paper, new approach based on coupled Laplace transformation with decomposition method is proposed to solve type of partial differential equation. Then it’s used to find the accurate solution for heat equation with initial conditions. Four examples introduced to illustrate the accuracy, efficiency of suggested method. The practical results show the importance of suggested method for solve differential equations with high accuracy and easy implemented.
The primary objective of this paper is to introduce a new concept of fibrewise topological spaces on D is named fibrewise multi- topological spaces on D. Also, we entroduce the concepts of multi-proper, fibrewise multi-compact, fibrewise locally multi-compact spaces, Moreover, we study relationships between fibrewise multi-compact (resp., locally multi-compac) space and some fibrewise multi-separation axioms.
A complete metric space is a well-known concept. Kreyszig shows that every non-complete metric space can be developed into a complete metric space , referred to as completion of .
We use the b-Cauchy sequence to form which “is the set of all b-Cauchy sequences equivalence classes”. After that, we prove to be a 2-normed space. Then, we construct an isometric by defining the function from to ; thus and are isometric, where is the subset of composed of the equivalence classes that contains constant b-Cauchy sequences. Finally, we prove that is dense in , is complete and the uniqueness of is up to isometrics
In this paper by using δ-semi.open sets we introduced the concept of weakly δ-semi.normal and δ-semi.normal spaces . Many properties and results were investigated and studied. Also we present the notion of δ- semi.compact spaces and we were able to compare with it δ-semi.regular spaces
In this paper, we proved coincidence points theorems for two pairs mappings which are defined on nonempty subset in metric spaces by using condition (1.1). As application, we established a unique common fixed points theorems for these mappings by using the concept weakly compatible (R-weakly commuting) between these mappings.
The formal integration of the interior spaces in general and the commercial spaces of the watch shops in the large commercial centers in particular is the goal that the designers aim to reach in order for the interior space to become successful in terms of the design idea and its characteristics. Implementation mechanism. One of the reasons for achieving formal integration in the interior spaces of watch shops is the requirements of the design that must be available in these spaces to reach a state of formal integration between the interior and the exterior so that the space becomes fully integrated in all respects. Because of the aforementioned reasons for dealing with the research, through four chapters: The first chapter included the
... Show MoreThe research is marked by (Development Design Interior spaces for children's theater halls in the city of Baghdad). Which consists of four chapters, namely, the first chapter the research problem and the need for him, which included identifying the research problem and of poor achievement of aesthetic values and functional at the scene of the child and its significance in that it is a way of cultural entertainment education of the child and its objectives as it aims to evelop interiors for children's theater, and its limits. Theater Magic Lantern in the city of Baghdad, the second chapter addressed the theoretical framework, which consists of the psychology of the child, and space Children's Theatre and types, forms of children's theater
... Show More