In this paper we define and study new concepts of fibrewise topological spaces over B namely, fibrewise Lindelöf and locally Lindelöf topological spaces, which are generalizations of will-known concepts: Lindelöf topological space (1) "A topological space X is called a Lindelöf space if for every open cover of X has a countable subcover" and locally Lindelöf topological space (1) "A topological space X is called a locally Lindelöf space if for every point x in X, there exist a nbd U of x such that the closure of U in X is Lindelöf space". Either the new concepts are: "A fibrewise topological space X over B is called a fibrewise Lindelöf if the projection function p : X→B is Lindelöf" and "The fibrewise topological space X over B is called a fibrewise locally Lindelöf if for each point x of Xb, where bÎB, there exist a nbd W of b and a nbd UÌXW of x such that the closure of U in XW (i.e., XW∩cl(U) ) is fibrewise Lindelöf space over W". Moreover, we study relationships between fibrewise Lindelöf (locally Lindelöf) spaces and some fibrewise separation axioms.
The concept of fuzzy orbit open sets under the mapping
Form the series of generalization of the topic of supra topology is the generalization of separation axioms . In this paper we have been introduced (S * - SS *) regular spaces . Most of the properties of both spaces have been investigated and reinforced with examples . In the last part we presented the notations of supra *- -space ( =0,1) and we studied their relationship with (S * - SS *) regular spaces.
This paper presents the concepts of prepaths, paths, and cycles in α-topological spaces and studies them in orderable spaces. Also, many relationships are proved with their equivalences using some properties in topological spaces like compactness and locally connectedness.
The significance fore supra topological spaces as a subject of study cannot be overstated, as they represent a broader framework than traditional topological spaces. Numerous scholars have proposed extension to supra open sets, including supra semi open sets, supra per open and others. In this research, a notion for ⱨ-supra open created within the generalizations of the supra topology of sets. Our investigation involves harnessing this style of sets to introduce modern notions in these spaces, specifically supra ⱨ - interior, supra ⱨ - closure, supra ⱨ - limit points, supra ⱨ - boundary points and supra ⱨ - exterior of sets. It has been examining the relationship with supra open. The research was also enriched with many
... Show MoreThis paper introduces some properties of separation axioms called α -feeble regular and α -feeble normal spaces (which are weaker than the usual axioms) by using elements of graph which are the essential parts of our α -topological spaces that we study them. Also, it presents some dependent concepts and studies their properties and some relationships between them.
The aim of this paper is to introduce the concept of N and Nβ -closed sets in terms of neutrosophic topological spaces. Some of its properties are also discussed.
studied, and its important properties and relationship with both closed and open Nano sets were investigated. The new Nano sets were linked to the concept of Nano ideal, the development of nano ideal mildly closed set and it has been studied its properties. In addition to the applied aspect of the research, a sample was taken from patients infected with viral hepatitis, and by examining the infected people and using closed and open (nano mildly. and nano ideal mildly) sets, the important symptoms that constitute the core of this dangerous examining the infected people and using closed and open (nano mildly. and nano ideal mildly) sets, the important symptoms that constitute the core of this dangerous disease.
In this paper, we define some generalizations of topological group namely -topological group, -topological group and -topological group with illustrative examples. Also, we define grill topological group with respect to a grill. Later, we deliberate the quotient on generalizations of topological group in particular -topological group. Moreover, we model a robotic system which relays on the quotient of -topological group.
The concept of -closedness, a kind of covering property for topological spaces, has already been studied with meticulous care from different angles and via different approaches. In this paper, we continue the said investigation in terms of a different concept viz. grills. The deliberations in the article include certain characterizations and a few necessary conditions for the -closedness of a space, the latter conditions are also shown to be equivalent to -closedness in a - almost regular space. All these and the associated discussions and results are done with grills as the prime supporting tool.
The concept of epiform modules is a dual of the notion of monoform modules. In this work we give some properties of this class of modules. Also, we give conditions under which every hollow (copolyform) module is epiform.