Preferred Language
Articles
/
1Rd8CJABVTCNdQwCGYKq
Bayesian Methods for Estimation the Parameters of Finite Mixture of Inverse Rayleigh Distribution
...Show More Authors

Methods of estimating statistical distribution have attracted many researchers when it comes to fitting a specific distribution to data. However, when the data belong to more than one component, a popular distribution cannot be fitted to such data. To tackle this issue, mixture models are fitted by choosing the correct number of components that represent the data. This can be obvious in lifetime processes that are involved in a wide range of engineering applications as well as biological systems. In this paper, we introduce an application of estimating a finite mixture of Inverse Rayleigh distribution by the use of the Bayesian framework when considering the model as Markov chain Monte Carlo (MCMC). We employed the Gibbs sampler and Metropolis – Hastings algorithms. The proposed techniques are applied to simulated data following several scenarios. The accuracy of estimation has been examined by the average mean square error (AMSE) and the average classification success rate (ACSR). The results showed that the method was well performed in all simulation scenarios with respect to different sample sizes.

Scopus Clarivate Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Wed Oct 20 2021
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Bayesian Estimation for Two Parameters of Weibull Distribution under Generalized Weighted Loss Function
...Show More Authors

In this paper, Bayes estimators for the shape and scale parameters of Weibull distribution have been obtained using the generalized weighted loss function, based on Exponential priors. Lindley’s approximation has been used effectively in Bayesian estimation. Based on theMonte Carlo simulation method, those estimators are compared depending on the mean squared errors (MSE’s).

View Publication Preview PDF
Crossref
Publication Date
Thu Mar 03 2022
Journal Name
Italian Journal Of Pure And Applied Mathematics
The inverse exponential Rayleigh distribution and related concept
...Show More Authors

Publication Date
Thu Jul 01 2021
Journal Name
Journal Of Physics: Conference Series
Estimation of the reliability function of the Rayleigh distribution using some robust and kernel methods
...Show More Authors
Abstract<p>The research presents the reliability. It is defined as the probability of accomplishing any part of the system within a specified time and under the same circumstances. On the theoretical side, the reliability, the reliability function, and the cumulative function of failure are studied within the one-parameter Raleigh distribution. This research aims to discover many factors that are missed the reliability evaluation which causes constant interruptions of the machines in addition to the problems of data. The problem of the research is that there are many methods for estimating the reliability function but no one has suitable qualifications for most of these methods in the data such </p> ... Show More
View Publication
Scopus (1)
Crossref (1)
Scopus Crossref
Publication Date
Mon Jul 01 2024
Journal Name
Alexandria Engineering Journal
Comparison of some Bayesian estimation methods for type-I generalized extreme value distribution with simulation
...Show More Authors

The Weibull distribution is considered one of the Type-I Generalized Extreme Value (GEV) distribution, and it plays a crucial role in modeling extreme events in various fields, such as hydrology, finance, and environmental sciences. Bayesian methods play a strong, decisive role in estimating the parameters of the GEV distribution due to their ability to incorporate prior knowledge and handle small sample sizes effectively. In this research, we compare several shrinkage Bayesian estimation methods based on the squared error and the linear exponential loss functions. They were adopted and compared by the Monte Carlo simulation method. The performance of these methods is assessed based on their accuracy and computational efficiency in estimati

... Show More
View Publication
Scopus (2)
Scopus Clarivate Crossref
Publication Date
Fri Oct 20 2023
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Truncated Inverse Generalized Rayleigh Distribution and Some Properties
...Show More Authors

Truncated distributions arise naturally in many practical situations. It’s a conditional distribution that develops when the parent distribution's domain is constrained to a smaller area. The distribution of a right truncated is one of the types of a single truncated that is restricted within a specific field and usually occurs when the specified period for the study is complete.  Hence, this paper introduces Right Truncated Inverse Generalized Rayleigh Distribution (RTIGRD) with two parameters  is introduced. Then, provided some properties such as; (probability density function, cumulative distribution function (CDF), survival function, hazard function, ‎rth moment, mean,   variance, Moment Generating Function, Skewness, kurtosi

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Fri Oct 30 2020
Journal Name
Journal Of Economics And Administrative Sciences
Comparison of some of reliability and Hazard estimation methods for Rayleigh logarithmic distribution using simulation with application
...Show More Authors

The question of estimation took a great interest in some engineering, statistical applications, various applied, human sciences, the methods provided by it helped to identify and accurately the many random processes.

In this paper, methods were used through which the reliability function, risk function, and estimation of the distribution parameters were used, and the methods are (Moment Method, Maximum Likelihood Method), where an experimental study was conducted using a simulation method for the purpose of comparing the methods to show which of these methods are competent in practical application This is based on the observations generated from the Rayleigh logarithmic distribution (RL) with sample sizes

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Sep 22 2019
Journal Name
Baghdad Science Journal
Estimation of Survival Function for Rayleigh Distribution by Ranking function:-
...Show More Authors

In this article, performing and deriving te probability density function for Rayleigh distribution is done by using ordinary least squares estimator method and Rank set estimator method. Then creating interval for scale parameter of Rayleigh distribution. Anew method using   is used for fuzzy scale parameter. After that creating the survival and hazard functions for two ranking functions are conducted to show which one is beast.

View Publication Preview PDF
Scopus (5)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Wed Apr 25 2018
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Using Approximation Non-Bayesian Computation with Fuzzy Data to Estimation Inverse Weibull Parameters and Reliability Function
...Show More Authors

        In real situations all observations and measurements are not exact numbers but more or less non-exact, also called fuzzy. So, in this paper, we use approximate non-Bayesian computational methods to estimate inverse Weibull parameters and reliability function with fuzzy data. The maximum likelihood and moment estimations are obtained as non-Bayesian estimation. The maximum likelihood estimators have been derived numerically based on two iterative techniques namely “Newton-Raphson” and the “Expectation-Maximization” techniques. In addition, we provide compared numerically through Monte-Carlo simulation study to obtained estimates of the parameters and reliability function i

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Mon Sep 25 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Comparison of the Suggested loss Function with Generalized Loss Function for One Parameter Inverse Rayleigh Distribution
...Show More Authors

The experiences in the life are considered important for many fields, such as industry, medical and others. In literature, researchers are focused on flexible lifetime distribution.

In this paper, some Bayesian estimators for the unknown scale parameter  of Inverse Rayleigh Distribution have been obtained, of different two loss functions, represented by Suggested and Generalized loss function based on Non-Informative prior using Jeffery's and informative prior represented by Exponential distribution. The performance of   estimators is compared empirically with Maximum Likelihood estimator, Using Monte Carlo Simulation depending on the Mean Square Error (MSE). Generally, the preference of Bayesian method of Suggeste

... Show More
View Publication Preview PDF
Publication Date
Sun Jan 02 2011
Journal Name
Education College Journal/al-mustansiriyah
Double Stage Shrinkage Estimators of Two Parameters Generalized Rayleigh Distribution
...Show More Authors