Preferred Language
Articles
/
1Rd8CJABVTCNdQwCGYKq
Bayesian Methods for Estimation the Parameters of Finite Mixture of Inverse Rayleigh Distribution
...Show More Authors

Methods of estimating statistical distribution have attracted many researchers when it comes to fitting a specific distribution to data. However, when the data belong to more than one component, a popular distribution cannot be fitted to such data. To tackle this issue, mixture models are fitted by choosing the correct number of components that represent the data. This can be obvious in lifetime processes that are involved in a wide range of engineering applications as well as biological systems. In this paper, we introduce an application of estimating a finite mixture of Inverse Rayleigh distribution by the use of the Bayesian framework when considering the model as Markov chain Monte Carlo (MCMC). We employed the Gibbs sampler and Metropolis – Hastings algorithms. The proposed techniques are applied to simulated data following several scenarios. The accuracy of estimation has been examined by the average mean square error (AMSE) and the average classification success rate (ACSR). The results showed that the method was well performed in all simulation scenarios with respect to different sample sizes.

Scopus Clarivate Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Wed Oct 20 2021
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
An Estimation of Survival and Hazard Rate Functions of Exponential Rayleigh Distribution
...Show More Authors

In this paper, we used the maximum likelihood estimation method to find the estimation values ​​for survival and hazard rate functions of the Exponential Rayleigh distribution based on a sample of the real data for lung cancer and stomach cancer obtained from the Iraqi Ministry of Health and Environment, Department of Medical City, Tumor Teaching Hospital, depending on patients' diagnosis records and number of days the patient remains in the hospital until his death.

View Publication Preview PDF
Crossref
Publication Date
Mon Jan 20 2020
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
On Estimation of P(Y<X) in Case Inverse Kumaraswamy Distribution
...Show More Authors

The estimation of the stressÙ€ strength reliability of Invers Kumaraswamy distribution will be introduced in this paper based on the maximum likelihood, moment and shrinkage methods. The mean squared error has been used to compare among proposed estimators. Also a Monte Carlo simulation study is conducted to investigate the performance of the proposed methods in this paper.

View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Fri Jan 20 2023
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Estimation of a Parallel Stress-strength Model Based on the Inverse Kumaraswamy Distribution
...Show More Authors

   

 The reliability of the stress-strength model attracted many statisticians for several years owing to its applicability in different and diverse parts such as engineering, quality control, and economics. In this paper, the system reliability estimation in the stress-strength model containing Kth parallel components will be offered by four types of shrinkage methods: constant Shrinkage Estimation Method, Shrinkage Function Estimator, Modified Thompson Type Shrinkage Estimator, Squared Shrinkage Estimator. The Monte Carlo simulation study is compared among proposed estimators using the mean squared error. The result analyses of the shrinkage estimation methods showed that the shrinkage functions estimator was the best since

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Apr 16 2023
Journal Name
Iraqi Journal For Computer Science And Mathematics
Some Methods to Estimate the Parameters of Generalized Exponential Rayleigh Model by Simulation
...Show More Authors

This paper shews how to estimate the parameter of generalized exponential Rayleigh (GER) distribution by three estimation methods. The first one is maximum likelihood estimator method the second one is moment employing estimation method (MEM), the third one is rank set sampling estimator method (RSSEM)The simulation technique is used for all these estimation methods to find the parameters for generalized exponential Rayleigh distribution. Finally using the mean squares error criterion to compare between these estimation methods to find which of these methods are best to the others

View Publication Preview PDF
Scopus (4)
Crossref (1)
Scopus Crossref
Publication Date
Fri Dec 01 2017
Journal Name
Journal Of Economics And Administrative Sciences
Comparison of some methods for estimating Poisson-Weibull distribution parameters
...Show More Authors

In this paper was discussed the process of compounding two distributions using new compounding procedure which is connect a number of life time distributions ( continuous distribution ) where is the number of these distributions represent random variable distributed according to one of the discrete random distributions . Based on this procedure have been compounding zero – truncated poisson distribution with weibell distribution to produce new life time distribution having three parameter , Advantage of that failure rate function having many cases ( increasing , dicreasing , unimodal , bathtube) , and study the resulting distribution properties such as : expectation , variance , comulative function , reliability function and fa

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Feb 01 2024
Journal Name
Baghdad Science Journal
Estimating the Parameters of Exponential-Rayleigh Distribution for Progressively Censoring Data with S- Function about COVID-19
...Show More Authors

The two parameters of Exponential-Rayleigh distribution were estimated using the maximum likelihood estimation method (MLE) for progressively censoring data. To find estimated values for these two scale parameters using real data for COVID-19 which was taken from the Iraqi Ministry of Health and Environment, AL-Karkh General Hospital. Then the Chi-square test was utilized to determine if the sample (data) corresponded with the Exponential-Rayleigh distribution (ER). Employing the nonlinear membership function (s-function) to find fuzzy numbers for these parameters estimators. Then utilizing the ranking function transforms the fuzzy numbers into crisp numbers. Finally, using mean square error (MSE) to compare the outcomes of the survival

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Sun Mar 01 2009
Journal Name
Journal Of Economics And Administrative Sciences
Simulation of five methods for parameter estimation and functionExponential distribution reliability
...Show More Authors
The estimation process is one of the pillars of the statistical inference process as well as the hypothesis test, and the assessment is based on the collection of information and conclusions about the teacher or the community's teachers on the basis of the result
... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Jan 16 2020
Journal Name
Periodicals Of Engineering And Natural Sciences
Comparison of some reliability estimation methods for Laplace distribution using simulations
...Show More Authors

In this paper, we derived an estimator of reliability function for Laplace distribution with two parameters using Bayes method with square error loss function, Jeffery’s formula and conditional probability random variable of observation. The main objective of this study is to find the efficiency of the derived Bayesian estimator compared to the maximum likelihood of this function and moment method using simulation technique by Monte Carlo method under different Laplace distribution parameters and sample sizes. The consequences have shown that Bayes estimator has been more efficient than the maximum likelihood estimator and moment estimator in all samples sizes

Publication Date
Sun Apr 26 2020
Journal Name
Iraqi Journal Of Science
On Estimation of P(Y_1<X<Y_2 ) in Cased Inverse Kumaraswamy Distribution
...Show More Authors

This paper deals with the estimation of the stress strength reliability for a component which has a strength that is independent on opposite lower and upper bound stresses, when the stresses and strength follow Inverse Kumaraswamy Distribution. D estimation approaches were applied, namely the maximum likelihood, moment, and shrinkage methods. Monte Carlo simulation experiments were performed to compare the estimation methods based on the mean squared error criteria.

View Publication Preview PDF
Scopus (13)
Crossref (7)
Scopus Crossref
Publication Date
Sun Dec 03 2017
Journal Name
Baghdad Science Journal
Bayes and Non-Bayes Estimation Methods for the Parameter of Maxwell-Boltzmann Distribution
...Show More Authors

In this paper, point estimation for parameter ? of Maxwell-Boltzmann distribution has been investigated by using simulation technique, to estimate the parameter by two sections methods; the first section includes Non-Bayesian estimation methods, such as (Maximum Likelihood estimator method, and Moment estimator method), while the second section includes standard Bayesian estimation method, using two different priors (Inverse Chi-Square and Jeffrey) such as (standard Bayes estimator, and Bayes estimator based on Jeffrey's prior). Comparisons among these methods were made by employing mean square error measure. Simulation technique for different sample sizes has been used to compare between these methods.

View Publication Preview PDF
Scopus (5)
Crossref (1)
Scopus Crossref