Objectives: Recently, there have been important advances in the clinical application of targeted hybrid near-infrared (NIR) fluorescent-radioactive tracers. ICG-99mTc-nanocolloid, for example, is already being used by some centres for sentinel lymph node biopsy in head and neck cancer. The radioactive component allows imaging at depths which would not be possible with NIR alone and, once exposed, the NIR fluorescence reporter can be imaged at very high resolution. Gamma detection is currently carried out with a separate hand-held gamma camera or with a non-imaging probe. Visualisation of NIR fluorescence during surgery requires a dedicated NIR camera, several of which are available commercially. We describe a novel hand-held hybrid NIR-gamma small field of view camera, capable of displaying co-aligned images from both modalities, which can be fused into one image or viewed separately. This study is a preliminary investigation of the performance of the fluorescence component of this camera, including phantom studies and first images from a preclinical pilot study. Methods: The hybrid camera consists of a 1500 µm thick thallium doped caesium iodide columnar (CsI:Tl) scintillator coupled to an electron multiplying charged coupled device (EMCCD). A 1.0mm diameter tungsten pinhole collimator gives a 40mm x 40mm nominal field of view for an 8mm x 8mm CCD detection area. A fluorescence camera was aligned to provide the same field of view as the gamma camera with an LED ring as the excitation source. The performance of the fluorescence imaging was quantified in this study for the fluorophores ICG and IRDye800CW (CW800) using a range of bespoke phantom experiments. In vivo images were also obtained from a preclinical study of a targeted hybrid tracer (cRGD-CW800-TCO + TCO-DOTA-111In) in mice with HT29 colorectal cancer xenografts. RESULTS AND CONCLUSION: The portable hybrid camera prototype has been shown to successfully image dual NIR-gamma tracers using both in vitro and in vivo experimental models. With further development, this camera could be used intraoperatively, offering the benefits of gamma imaging at depth in tissues and high resolution surface NIR fluorescence imaging in a single imaging system.
In this paper we define and study new concepts of fibrewise topological spaces over B namely, fibrewise near topological spaces over B. Also, we introduce the concepts of fibrewise near closed and near open topological spaces over B; Furthermore we state and prove several Propositions concerning with these concepts.
The purpose of this paper is to consider fibrewise near versions of the more important separation axioms of ordinary topology namely fibrewise near T0 spaces, fibrewise near T1 spaces, fibrewise near R0 spaces, fibrewise near Hausdorff spaces, fibrewise near functionally Hausdorff spaces, fibrewise near regular spaces, fibrewise near completely regular spaces, fibrewise near normal spaces and fibrewise near functionally normal spaces. Also we give several results concerning it.
Recording an Electromyogram (EMG) signal is essential for diagnostic procedures like muscle health assessment and motor neurons control. The EMG signals have been used as a source of control for powered prosthetics to support people to accomplish their activities of daily living (ADLs). This work deals with studying different types of hand grips and finding their relationship with EMG activity. Five subjects carried out four functional movements (fine pinch, tripod grip and grip with the middle and thumb finger, as well as the power grip). Hand dynamometer has been used to record the EMG activity from three muscles namely; Flexor Carpi Radialis (FCR), Flexor Digitorum Superficialis (FDS), and Abductor Pollicis Brevis (ABP) with different
... Show MoreThis paper presents the design and analysis of composite right left hand (CRLH) electromagnetic bandgap (EBG) structure. The proposed unit cell is consistent of a dielectric substrate with dimensions of 5×5×1 mm 3 made of FR4-Epoxy with εr = 4.4 underneath of a conductive patch with dimensions of 4.4×4.4mm 2 . The unit cell is structured to perform a negative permittivity (ε) and negative permeability (µ) in different bands. The proposed unit cell is developed to 5G systems in the sub-6GHz bands. In this work, a complete analysis of the unit cell in terms of Sparameters, constitutive parameters and refraction index are evaluated using HFSS simulation package based on Finite Element Method (FEM).
Most real-life situations need some sort of approximation to fit mathematical models. The beauty of using topology in approximation is achieved via obtaining approximation for qualitative subgraphs without coding or using assumption. The aim of this paper is to apply near concepts in the -closure approximation spaces. The basic notions of near approximations are introduced and sufficiently illustrated. Near approximations are considered as mathematical tools to modify the approximations of graphs. Moreover, proved results, examples, and counterexamples are provided.
Leap Motion Controller (LMC) is a gesture sensor consists of three infrared light emitters and two infrared stereo cameras as tracking sensors. LMC translates hand movements into graphical data that are used in a variety of applications such as virtual/augmented reality and object movements control. In this work, we intend to control the movements of a prosthetic hand via (LMC) in which fingers are flexed or extended in response to hand movements. This will be carried out by passing in the data from the Leap Motion to a processing unit that processes the raw data by an open-source package (Processing i3) in order to control five servo motors using a micro-controller board. In addition, haptic setup is proposed using force sensors (F
... Show More