Throughout this paper we introduce the notion of coextending module as a dual of the class of extending modules. Various properties of this class of modules are given, and some relationships between these modules and other related modules are introduced.
The idea of ech fuzzy soft bi-closure space ( bicsp) is a new one, and its basic features are defined and studied in [1]. In this paper, separation axioms, namely pairwise, , pairwise semi-(respectively, pairwise pseudo and pairwise Uryshon) - fs bicsp's are introduced and studied in both ech fuzzy soft bi-closure space and their induced fuzzy soft bitopological spaces. It is shown that hereditary property is satisfied for , with respect to ech fuzzy soft bi-closure space but for other mentioned types of separations axioms, hereditary property satisfies for closed subspaces of ech fuzzy soft bi-closure space.
In this paper introduce some generalizations of some definitions which are, closure converge to a point, closure directed toward a set, almost ω-converges to a set, almost condensation point, a set ωH-closed relative, ω-continuous functions, weakly ω-continuous functions, ω-compact functions, ω-rigid a set, almost ω-closed functions and ω-perfect functions with several results concerning them.
The main aim of this paper is to use the notion which was introduced in [1], to offered new classes of separation axioms in ideal spaces. So, we offered new type of notions of convergence in ideal spaces via the set. Relations among several types of separation axioms that offered were explained.
The aims of this thesis are to study the topological space; we introduce a new kind of perfect mappings, namely j-perfect mappings and j-ω-perfect mappings. Furthermore, we devoted to study the relationship between j-perfect mappings and j-ω-perfect mappings. Finally, certain theorems and characterization concerning these concepts are studied. On the other hand, we studied weakly/ strongly forms of ω-perfect mappings, namely -ω-perfect mappings, weakly -ω-perfect mappings and strongly-ω-perfect mappings; also, we investigate their fundamental properties. We devoted to study the relationship between weakly -ω-perfect mappings and strongly -ω-perfect mappings. As well as, some new generalizations of some definitions wh
... Show More