Researcher Image
هدى حمودي عمران - Huda omran altaie
PhD - assistant professor
College of Education for Pure Sciences (Ibn Al-Haitham) , Department of Mathematics
[email protected]
Publication Date
Thu Jul 20 2023
Journal Name
Bn Al-haitham Journal For Pure And Applied Sciences
Analytical Solutions to Investigate Fractional Newell-Whitehead Nonlinear Equationusing SumuduTransform Decomposition Method

Some nonlinear differential equations with fractional order are evaluated using a novel approach, the Sumudu and Adomian Decomposition Technique (STADM). To get the results of the given model, the Sumudu transformation and iterative technique are employed. The suggested method has an advantage over alternative strategies in that it does not require additional resources or calculations. This approach works well, is easy to use, and yields good results. Besides, the solution graphs are plotted using MATLAB software. Also, the true solution of the fractional Newell-Whitehead equation is shown together with the approximate solutions of STADM. The results showed our approach is a great, reliable, and easy method to deal with specific problems in

... Show More
Publication Date
Wed Jul 20 2022
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
A new technique for solving fractional nonlinear equations by sumudu transform and adomian decomposition method

A novel technique Sumudu transform Adomian decomposition method (STADM), is employed to handle some kinds of nonlinear time-fractional equations. We demonstrate that this method finds the solution without discretization or restrictive assumptions. This method is efficient, simple to implement, and produces good results. The fractional derivative is described in the Caputo sense. The solutions are obtained using STADM, and the results show that the suggested technique is valid and applicable and provides a more refined convergent series solution. The MATLAB software carried out all the computations and graphics. Moreover, a graphical representation was made for the solution of some examples. For integer and fractional order problems, solutio

... Show More
Publication Date
Thu Nov 17 2022
Journal Name
Journal Of Interdisciplinary Mathematics
Study on approximate analytical methods for nonlinear differential equations

In this work, an analytical approximation solution is presented, as well as a comparison of the Variational Iteration Adomian Decomposition Method (VIADM) and the Modified Sumudu Transform Adomian Decomposition Method (M STADM), both of which are capable of solving nonlinear partial differential equations (NPDEs) such as nonhomogeneous Kertewege-de Vries (kdv) problems and the nonlinear Klein-Gordon. The results demonstrate the solution’s dependability and excellent accuracy.

Scopus (8)
Scopus
Publication Date
Sun Nov 01 2020
Journal Name
International Journal Of Nonlinear Analysis And Applications
Two Efficient Methods For Solving Non-linear Fourth-Order PDEs

This paper studies a novel technique based on the use of two effective methods like modified Laplace- variational method (MLVIM) and a new Variational method (MVIM)to solve PDEs with variable coefficients. The current modification for the (MLVIM) is based on coupling of the Variational method (VIM) and Laplace- method (LT). In our proposal there is no need to calculate Lagrange multiplier. We applied Laplace method to the problem .Furthermore, the nonlinear terms for this problem is solved using homotopy method (HPM). Some examples are taken to compare results between two methods and to verify the reliability of our present methods.

Scopus (9)
Scopus
Publication Date
Sun Jul 04 2021
Journal Name
Journal Of Interdisciplinary Mathematics
Comparison the solutions for some kinds of differential equations using iterative methods

This manuscript presents several applications for solving special kinds of ordinary and partial differential equations using iteration methods such as Adomian decomposition method (ADM), Variation iterative method (VIM) and Taylor series method. These methods can be applied as well as to solve nonperturbed problems and 3rd order parabolic PDEs with variable coefficient. Moreover, we compare the results using ADM, VIM and Taylor series method. These methods are a commination of the two initial conditions.

Scopus (8)
Scopus
Publication Date
Fri Nov 01 2013
Journal Name
Al-nahrain Journal Of Science
Modified third order iterative method for solving nonlinear equations

Many numerical approaches have been suggested to solve nonlinear problems. In this paper, we suggest a new two-step iterative method for solving nonlinear equations. This iterative method has cubic convergence. Several numerical examples to illustrate the efficiency of this method by Comparison with other similar methods is given.

Publication Date
Mon Nov 01 2021
Journal Name
International Journal Of Nonlinear Analysis And Applications
Solution of Riccati matrix differential equation using new approach of variational ‎iteration method

To obtain the approximate solution to Riccati matrix differential equations, a new variational iteration approach was ‎proposed, which is suggested to improve the accuracy and increase the convergence rate of the approximate solutons to the ‎exact solution. This technique was found to give very accurate results in a few number of iterations. In this paper, the ‎modified approaches were derived to give modified solutions of proposed and used and the convergence analysis to the exact ‎solution of the derived sequence of approximate solutions is also stated and proved. Two examples were also solved, which ‎shows the reliability and applicability of the proposed approach. ‎

Publication Date
Mon Nov 01 2021
Journal Name
Proceedings Of First International Conference On Mathematical Modeling And Computational Science: Icmmcs 2020
Study the Stability for Ordinary Differential Equations Using New Techniques via Numerical Methods

Nonlinear differential equation stability is a very important feature of applied mathematics, as it has a wide variety of applications in both practical and physical life problems. The major object of the manuscript is to discuss and apply several techniques using modify the Krasovskii's method and the modify variable gradient method which are used to check the stability for some kinds of linear or nonlinear differential equations. Lyapunov function is constructed using the variable gradient method and Krasovskii’s method to estimate the stability of nonlinear systems. If the function of Lyapunov is positive, it implies that the nonlinear system is asymptotically stable. For the nonlinear systems, stability is still difficult even though

... Show More
Scopus (8)
Scopus
Publication Date
Thu May 30 2024
Journal Name
Journal Of Interdisciplinary Mathematics
Analytical approximate solutions of random integro differential equations with laplace decomposition method

An efficient combination of Adomian Decomposition iterative technique coupled with Laplace transformation to solve non-linear Random Integro differential equation (NRIDE) is introduced in a novel way to get an accurate analytical solution. This technique is an elegant combination of theLaplace transform, and the Adomian polynomial. The suggested method will convert differential equations into iterative algebraic equations, thus reducing processing and analytical work. The technique solves the problem of calculating the Adomian polynomials. The method’s efficiency was investigated using some numerical instances, and the findings demonstrate that it is easier to use than many other numerical procedures. It has also been established that (LT

... Show More
Scopus
Publication Date
Sat Nov 12 2016
Journal Name
International Journal Of Mechanical Engineering And Technology (ijmet)
PERFORMANCE OF TWO-WAY NESTING TECHNIQUES FOR SHALLOW WATER MODELS

A new two-way nesting technique is presented for a multiple nested-grid ocean modelling system. The new technique uses explicit center finite difference and leapfrog schemes to exchange information between the different subcomponents of the nested-grid system. The performance of the different nesting techniques is compared, using two independent nested-grid modelling systems. In this paper, a new nesting algorithm is described and some preliminary results are demonstrated. The validity of the nesting method is shown in some problems for the depth averaged of 2D linear shallow water equation.

Publication Date
Sat Jul 20 2024
Journal Name
Journal Of Interdisciplinary Mathematics
Elzaki transform decomposition approach to solve Riccati matrix differential equations

Elzaki Transform Adomian decomposition technique (ETADM), which an elegant combine, has been employed in this work to solve non-linear Riccati matrix differential equations. Solutions are presented to demonstrate the relevance of the current approach. With the use of figures, the results of the proposed strategy are displayed and evaluated. It is demonstrated that the suggested approach is effective, dependable, and simple to apply to a range of related scientific and technical problems.

Scopus
Publication Date
Thu May 30 2024
Journal Name
Journal Of Interdisciplinary Mathematics
Laplace transform-adomian decomposition approach for solving random partial differential equations

Market share is a major indication of business success. Understanding the impact of numerous economic factors on market share is critical to a company’s success. In this study, we examine the market shares of two manufacturers in a duopoly economy and present an optimal pricing approach for increasing a company’s market share. We create two numerical models based on ordinary differential equations to investigate market success. The first model takes into account quantity demand and investment in R&D, whereas the second model investigates a more realistic relationship between quantity demand and pricing.

Scopus
Publication Date
Sat Jul 20 2024
Journal Name
Journal Of Interdisciplinary Mathematics
Analytical solutions via coupled Elzaki adomian decomposition method for some applications

An efficient combination of Adomian Decomposition iterative technique coupled Elzaki transformation (ETADM) for solving Telegraph equation and Riccati non-linear differential equation (RNDE) is introduced in a novel way to get an accurate analytical solution. An elegant combination of the Elzaki transform, the series expansion method, and the Adomian polynomial. The suggested method will convert differential equations into iterative algebraic equations, thus reducing processing and analytical work. The technique solves the problem of calculating the Adomian polynomials. The method’s efficiency was investigated using some numerical instances, and the findings demonstrate that it is easier to use than many other numerical procedures. It has

... Show More
Scopus
Publication Date
Fri May 01 2020
Journal Name
Journal Of Physics: Conference Series
Recent modification of Homotopy perturbation method for solving system of third order PDEs

This paper presents new modification of HPM to solve system of 3 rd order PDEs with initial condition, for finding suitable accurate solutions in a wider domain.

Scopus (18)
Scopus
No Events Found