عرفت النقطه (العامدة

Fixed-Point Iteration

A fixed point for a function is a number at which the value of the function does not change when the function is applied.

Definition . The number p is a fixed point for a given function g if g(p) = p.

Suppose that the equation f(x) = 0 can be rearranged as

$$x = g(x) \tag{2.2}$$

Any solution of this equation is called a fixed point of g. An obvious iteration to try for the calculation of fixed points is

$$x_{n+1} = g(x_n)$$
 $n = 0, 1, 2, \cdots$ (2.3)

The value of x_0 is chosen arbitrarily and the hope is that the sequence x_0, x_1, x_2, \cdots converges to a number α which will automatically satisfy equation (2.2).

Moreover, since equation (2.2) is a rearrangement of (2.1), α is guaranteed to be a zero of f.

In general, there are many different ways of rearranging f(x) = 0 in the form (2.2). However, only some of these are likely to give rise to successful iterations, as the following example demonstrates.

Example \ , Consider the quadratic equation

$$x^2 - 2x - 8 = 0$$

with roots -2 and 4. Three possible rearrangement's of this equation are

(a)
$$x_{n+1} = \sqrt{2x_n + 8}$$

(b)
$$x_{n+1} = \frac{2x_n+8}{x}$$

(c)
$$x_{n+1} = \frac{x_n^2 - 8}{2}$$

91 DX=2X+8 -> X=12X+8 $\sqrt[9]{2} = 2X + 8 \Rightarrow X = 2X + 8$

(c) $x_{n+1} = \frac{x_n^2 - 8}{2}$ Numerical results for the corresponding iterations, starting with $x_0 = 5$, are given in Matlab code 2.11 with the Table.

$$g_{1(x)} = (2x+8)^{1/2} \rightarrow g_{1(x)} = \frac{1}{2} (2x+8)^{-1/2}, 2' = (2x+8)^{-1/2} \rightarrow is |g_{1(s)}| < 1$$
?
 $g_{2(x)} = 2x+8 \rightarrow g_{1(x)} = -8 \rightarrow |g_{2(s)}| < 1$?

$$g_{2(x)} = \frac{2x+8}{x}$$
 $\longrightarrow g_{2}(x) = -\frac{8}{x^{2}}$

$$= 2+\frac{8}{x}$$

$$g_s(x) = \frac{\chi^2 - 8}{2} \rightarrow g_s(x) = \frac{2}{2} = 2$$
 (diverge)

Solution:

1	\mathbf{k}	Xa	Xb	Xc
2		X 		
3	1	4.24264069	3.60000000	8.50000000
4	2	4.06020706	4.2222222	32.12500000
5	3	4.01502355	3.89473684	512.0078125
6	4	4.00375413	4.05405405	131072.0000
7	5	4.00093842	3.97333333	8589934592.0
8	6	4.00023460	4.01342282	3.6893e+19

Consider that the sequence converges for (a) and (b), but diverges for (c).

This example highlights the need for a mathematical analysis of the method. Sufficient conditions for the convergence of the fixed point iteration are given in the following (without proof) theorem.

Theorem \P : If g' exists on an interval $I = [\alpha - A, \alpha + A]$ containing the starting value x_0 and fixed point α , then x_n converges to α provided

$$|g'(x)| < 1$$
 on I

We can now explain the results of Example 2.5

- (a) If $g(x) = (2x+8)^{\frac{1}{2}}$ then $g'(x) = (2x+8)^{-1/2}$ Theorem 2.6 guarantees convergence to the positive root $\alpha = 4$, because |g'(x)| < 1 on the interval $I = [3,5] = [\alpha 1, \alpha + 1]$ containing the starting value $x_0 = 5$. which is in agreement with the results of column Xa in the Table.
- (b) If $g(x) = \frac{(2x+8)}{x}$ then $g'(x) = \frac{-8}{x^2}$ Theorem Δ guarantees convergence to the positive root $\alpha = 4$, because |g'(x)| < 1 as (a), which is in agreement with the results of column Xb in the Table.

(c) If $g(x) = \frac{(x^2-8)}{2}$ then g'(x) = x Theorem cannot be used to guarantee convergence, which is in agreement with the results of column Xc in the Table.

Example 2 Find the approximate solution for the equation

$$f(x) = x^4 - x - 10 = 0$$

by fixed point iteration method starting with $x_0 = 1.5$ with $|x_n - x_{n-1}| < 0.009$

Solution

The function f(x) has a root in the interval (1,2), **Why**? rearrange the equation as

$$x_{n+1} = g(x_n) = \sqrt{x_n + 10}$$

then

$$g'(x) = \frac{(x+10)^{\frac{-3}{4}}}{4}$$

Achieving the condition

$$|g'(x)| \le 0.04139$$
 on $(1,2)$

then we get the solution sequence $\{1.5, 1.8415, 1.85503, 1.8556, \dots\}$. consider that |1.85503 - 1.8556| = 0.00057 < 0.009.

بتجينوم الشرع (مرع التوقف)

$$|g'(x)| = |g'(1.5)| = |\frac{1}{4}(1.5+10)| = 0.04<|$$

NUMERICAL ANALYSIS

Department of Mathematics

FIXED POINT ITERATION METHOD

ALGORITHM

- 1. Consider f(x) = 0 and transform it to the form $x = \varphi(x)$
- 2. Choose an arbitrary x₀
- 3. Do the iterations $\mathbf{x}_{k+1} = \boldsymbol{\varphi}\left(x_{k}\right)$; k=0,1,2,3......

STOPING CRITERIA

Let " ϵ " be the tolerance value

- $1. |x_k x_{k-1}| \le \epsilon$
- $2. |x_k f(x_k)| \le \epsilon$
- 3. Maximum number of iterations reached.
- 4. Any combination of above.

CONVERGENCE CRITERIA

Let "x" be exact root such that r=f(x) out iteration is $x_{n+1}=f(x_n)$

Define the error $\epsilon_n = x_n$ -r Then

$$\epsilon_{n+1} = x_{n+1} - r = f(x_n) - r = f(x_n) - f(r) = f'(\S)(x_n - r)$$

(Where $\S \in (x_n, r)$; since f is continuous)

$$\epsilon_{n+1} = f'(\S)\epsilon_n \implies \epsilon_{n+1} \le |f'(\S)||\epsilon_n|$$

OBSERVATIONS

If $|f'(\S)| < 1$, error decreases, the iteration converges (linear convergence)

If $|f'(\S)| \ge 1$, error increases, the iteration diverges.

REMEMBER: If $|\varphi'(x)| < 1$ in questions then take that point as initial guess.

لا يها د الحذور للمعاول مع (xu) مالطريق المتحراب دي المعاول بالشكل (منكوب العرف الاسمر خيار مستيسم والعرف الآين داله محتلفه (pe و دكون المنهر عندنقالمع ها شين الماليس كامو جنع

age of Education for pure Sciences Ibn Al-Hathiam

epartment of Mathematics

Example 3: Find the approximate solution for the equation f(x): $x^2 - x - 3 = 0$ by fixed point iteration method.

Solution:

$$x_0=2.5 \iff {-\choose 2}, {+\choose 3}$$
 يوجد جذراً للمعادلة في الفترة

$$x=g(x)$$
 نكتب المعادلة على شكل

x = g(x) هناك اكثر من طريقة واسلوب لكتابة المعادلة بالصيغة

a)
$$x = 1 + \frac{3}{x} = g_1(x)$$

b)
$$x = x^2 - 3 = g_2(x)$$

$$\rightarrow X^2 \times -3 = 0 \rightarrow X = X^2$$

c)
$$x = \frac{9x - x^2 + 3}{8} = g_3(x)$$

$$(- x^2 - 9x + 8x - 3 = 0) = 8x = 9x - x^2$$

d)
$$x = \frac{x^2 + 3}{2x - 1} = g_4(x)$$

a)
$$x = 1 + \frac{1}{x} = g_1(x)$$

b) $x = x^2 - 3 = g_2(x)$ $\longrightarrow x^2 - 3 = 0$ $\longrightarrow x = x^2 - 3$
c) $x = \frac{9x - x^2 + 3}{8} = g_3(x)$ $\longleftarrow x^2 - 9x + 8x - 3 = 0$ $\longrightarrow 8x = 9x - x^2 + 3$
d) $x = \frac{x^2 + 3}{2x - 1} = g_4(x)$ $\longleftarrow +2x^2 - x^2 - 3 = 0$ $\longrightarrow 2x^2 - x = x + 3$ $\longrightarrow x = x^2 + 3$
 $\xrightarrow{x} = x + 1$ $\xrightarrow{x} = x + 3$ $\xrightarrow{x} = x + 3$

X	$x_{n+1} = g_1(x_n)$	$x_{n+1} = g_2(x_n)$	$x_{n+1} = g_3(x_n)$	$x_{n+1} = g_4(x_n)$
x_0	2.5	2.5	2.5	2.5
x_1	2.2	3.25	2.40625	2.3125
x_2	2.36364	7.5625	-2.35828	2.302802
x_3	2.26923	54.1914	2.33288	2.302776
x_4	2.32203	2933.71	2.31920	2.302776
x_5	2.29197	8606642.63	2.31176	2.302776
x_6	2.30892	7.41×10^{13}	2.30770	2.302776

كما المتارب "ان الارعم تسرين كيف نختار g ؟ ان الشرط الكافي لتقارب الصيغة التكرارية $x_{n+1} = g(x_n)$ هو y'(x) = g'(x) بحسب المبرهنة التالية

Fixed Point Theorem:

Let $g \in C[a, b]$ be such that $g(x) \in [a, b]$, for all x in [a, b]. Suppose, in addition, that g' exists on (a, b) and that a constant 0 < k < 1 exists with

$$|g'(x)| < k \quad \forall x \in (a, b).$$

Then, for any number p_0 in [a, b], the sequence defined by $p_{n+1} = g(p_n)$ n = 0,1,2,...converges to the unique fixed point p in [a, b].

For the above example we note

$$g_1'(x) = \frac{-3}{x^2} \Rightarrow |g_1'(2.5)| = 0.48 < 1$$

$$g_2'(x) = 2x \Rightarrow |g_2'(2.5)| = 5 > 1$$

$$g_3'(x) = \frac{9}{8} - \frac{x}{4} \Rightarrow |g_3'(2.5)| = 0.5 < 1$$

$$g_4'(x) = \frac{(2x-1)2x-(x^2+3)2}{(2x-1)^2} \Rightarrow |g_4'(2.5)| = 0.0938 < 1$$

Department of Mathematics

EXAMPLE

Find the root of equation 2x = cosx + 3 correct to three decimal points using fixed point iteration method.

SOLUTION

Given that $f(x) = 2x - \cos x - 3 = 0$

	10	11	2	
X	U		1.4161	
F(X)	-4	-1.5403	1.4101	

Root lies between "1" and "2"

Now
$$2x - \cos x - 3 = 0 \Rightarrow x = \frac{\cos x + 3}{2} = \varphi(x)$$

$$\Rightarrow \varphi'(x) = \frac{1}{2} (-\sin x) \Rightarrow |\varphi'(x)| = \left| \frac{1}{2} (-\sin x) \right|$$

Now
$$x_{n+1} = \varphi(x_n) \Rightarrow x_{n+1} = \frac{1}{2}(\cos x_n + 3)$$

Here we will take "xo" as mid-point. So

If by putting 1 we get $|\varphi'(x)| < 1$ then take it as "x₀" if not then check for 2 rather take their midpoint

Hence the real root is 1.9997

25)

College of Education for pure Sciences Ibn Al-Hathiam

Department of Mathematics

EXAMPLE 5

Find the root of equation $e^{-x} = 10x$ correct to four decimal points using fixed point iteration method.

SOLUTION

Given that

$$f(x) = e^{-x} - 10x = 0$$

X	0	
F(X)		1 1
. (2)	1	-9.6321

Root lies between "0" and "1"

Now
$$e^{-x} - 10x = 0 \Rightarrow x = \frac{e^{-x}}{10} = \varphi(x)$$

$$\Rightarrow \varphi'(x) = -\frac{e^{-x}}{10}$$

Now since |arphi'(0)|=0. 1 is less than "1" therefore $x_0=0$

Now
$$x_{n+1} = \varphi(x_n) \Rightarrow x_{n+1} = \frac{e^{-x_n}}{10}$$

$X_1 = \frac{e^{-10}}{10} = \frac{e^{-1}}{10} = 0.1000$	$F(x_1) = -0.0952$
X ₂ = 0.0905	F(x ₂) = 0.0085
$X_3 = 0.0913$	$F(x_3) = -0.0003$
x ₄ = 0.0913	$F(x_4) = -0.0003$

Hence the real root is 0.0913