Objective: Evaluate the effects of different storage periods on flexural strength (FS) and degree of conversion (DC) of Bis-Acryl composite and Urethane dimethacrylate provisional restorative materials. Material and Methods: A total of 60 specimens were prepared from four temporary crown materials commercially available and assigned to four tested groups (n = 15 for each group): Prevision Temp, B&E CROWN, Primma Art, and Charm Temp groups. The specimens were stored in artificial saliva, and the FS was tested after 24 h, 7 d, and 14 d. A standard three-point bending test was conducted using a universal testing machine. Additionally, the DC was determined using a Fourier transform infrared spectroscopy (FTIR) device. The data were analyzed statistically using two- way ANOVA, Tukey`s HSD post-hoc test, and the Bonferroni test, all at a 5% significance level. For each group, a paired samples test was applied to compare the DC of the immediate and 24 h samples. Results: The highest FS value was found for the Prevision Temp material, while the Charm Temp material showed the lowest FS, with no statistically significant difference between the mean values of the groups at 24 h; while there were significant differences at 7d and 14 d of storage. However, within each group, the aging had no significant impact on the FS, except for an increase in the FS of the B&E CROWN group after 14 d. Prevision Temp also had the highest mean DC value. At each time interval, significant differences were recorded. Moreover, within each group of material, aging significantly increased the DC, except for the Primma Art. Conclusion: Bis-acryl composite resin materials exhibited higher flexural strength compared to traditional methyl methacrylate resin during the 14 d investigation period. Aging in artificial saliva did not significantly affect the mechanical performance of the tested materials. Materials with higher DC values showed greater flexural strength; where the Prevision Temp showed higher FS and DC values than the other tested materials.
This paper examines the impact of flexural strengthening on the percentage of damaged strands in internally unbonded tendons in partially prestressed concrete beams (0, 14.28%, and 28.57%) and the recovering conditions using CFRP composite longitudinal laminates at the soffit, and end anchorage U-wrap sheets to restore the original flexural capacity and mitigate the delamination of the soffit of longitudinal Carbon Fiber Reinforced Polymer (CFRP) laminates. The composition of the laminates and anchors affected the stress of the CFRP, the failure mode, and thus the behavior of the beam. The experimental results revealed that the usage of CFRP laminates has a considerable impact on strand strain, particularly when anchors are employed
... Show MoreThe study presents the performance of flexural strengthening of concrete members exposed to partially unbonded prestressing with a particular emphasis on the amount (0, 14.2, and 28.5%) of cut strands-symmetrical and asymmetrical damage. In addition to examining the influence of cut strands on the remaining capacity of post-tensioned unbonded members and the effectiveness of carbon fiber reinforced polymer laminates restoration, The investigated results on rectangular members subjected to a four-point static bending load based on the composition of the laminate affected the stress of the CFRP, the failure mode, and flexural strength and deflection are covered in this study. The experimental results revealed that the usage of CFRP la
... Show More
Cutting forces are important factors for determining machine serviceability and product quality. Factors such as speed feed, depth of cut and tool noise radius affect on surface roughness and cutting forces in turning operation. The artificial neural network model was used to predict cutting forces with related to inputs including cutting speed (m/min), feed rate (mm/rev), depth of cut (mm) and work piece hardness (Map). The outputs of the ANN model are the machined cutting force parameters, the neural network showed that all (outputs) of all components of the processing force cutting force FT (N), feed force FA (N) and radial force FR (N) perfect accordance with the experimental data. Twenty-five samp
... Show MoreThis study focuses on how tax administrations in Iraq use Artificial Intelligence (AI) techniques to monitor tax evasion for individuals and companies to achieve Tax Compliance (TC). AI was measured through four dimensions: Advanced Data Analytics Techniques (ADAT), Explainable AI (EAI), Machine learning (ML), and Robotic Process Automation (RPA). At the same time, TC was measured through registration, accounting, and tax payment stages. We relied on the questionnaire form to measure the variables. A sample of employees in the General Tax Authority in Iraq was selected, and a questionnaire was distributed to 132 people. The results indicated that the dimensions of AI affect achieving TC at all stages. This study provides evidence of using A
... Show MoreA numerical method (F.E.)was derived for incompressible viscoelastic materials, the aging and
environmental phenomena especially the temperature effect was considered in this method. A
treatment of incompressibility was made for all permissible values of poisons ratio. A
mechanical model represents the incompressible viscoelastic materials and so the properties can
be derived using the Laplace transformations technique .A comparison was made with the other
methods interested with viscoelastic materials by applying the method on a cylinder of viscoelastic material surrounding by a steel casing and subjected to a constant internal pressure, as well as a comparison with another viscoelastic method and for Asphalt Concrete pro
In this study, the flexural performance of a new composite beam–slab system filled with concrete material was investigated, where this system was mainly prepared from lightweight cold-formed steel sections of a beam and a deck slab for carrying heavy floor loads as another concept of a conventional composite system with a lower cost impact. For this purpose, seven samples of a profile steel sheet–dry board deck slab (PSSDB/PDS) carried by a steel cold-formed C-purlins beam (CB) were prepared and named “composite CBPDS specimen”, which were tested under a static bending load. Specifically, the effects of the profile steel sheet (PSS) direction (parallel or perpendicular to the span of the specimen) using different C-purlins c
... Show MoreThe advancement of cement alternatives in the construction materials industry is fundamental to sustainable development. Geopolymer is the optimal substitute for ordinary Portland cement, which produces 80% less CO2 emissions than ordinary Portland cement. Metakaolin was used as one of the raw materials in the geopolymerization process. This research examines the influence of three different percentages of sulfate (0.00038, 1.532, and 16.24) % in sand per molarity of NaOH on the compressive strength of metakaolin-based geopolymer mortar (MK-GPM). Samples were prepared with two different molarities (8M and 12M) and cured at room temperature. The best compressive strength value (56.98MPa) was recorded with 12M w
... Show MoreBackground: This study compared in vitro the marginal adaptation of three different, low shrink, direct posterior composites Filtekâ„¢ P60 (packable composite), Filtekâ„¢ P90 (Silorane-based composite) and Sonic fillâ„¢ (nanohybrid composite) at three different composite/enamel interface regions (occlusal, proximal and gingival regions) of a standardized Class II MO cavity after thermal changes and mechanical load cycling by scanning electron microscopy. Materials and methods:Thirty six sound human maxillary first premolars of approximately comparable sizes were divided into three main groups of (12 teeth) in each according to the type of restorative material that was used: group (A) the teeth were restored with Filtekâ„¢ P6
... Show MoreANN modeling is used here to predict missing monthly precipitation data in one station of the eight weather stations network in Sulaimani Governorate. Eight models were developed, one for each station as for prediction. The accuracy of prediction obtain is excellent with correlation coefficients between the predicted and the measured values of monthly precipitation ranged from (90% to 97.2%). The eight ANN models are found after many trials for each station and those with the highest correlation coefficient were selected. All the ANN models are found to have a hyperbolic tangent and identity activation functions for the hidden and output layers respectively, with learning rate of (0.4) and momentum term of (0.9), but with different data
... Show More