Preferred Language
Articles
/
MhcciY4BVTCNdQwCqky0
The Role of Artificial Intelligence in Diagnosing Heart Disease in Humans: A Review
...Show More Authors

The electrical activity of the heart and the electrocardiogram (ECG) signal are fundamentally related. In the study that has been published, the ECG signal has been examined and used for a number of applications. The monitoring of heart rate and the analysis of heart rhythm patterns, the detection and diagnosis of cardiac diseases, the identification of emotional states, and the use of biometric identification methods are a few examples of applications in the field. Several various phases may be involved in the analysis of electrocardiogram (ECG) data, depending on the type of study being done. Preprocessing, feature extraction, feature selection, feature modification, and classification are frequently included in these stages. Every stage must be finished in order for the analysis to go smoothly. Additionally, accurate success measures and the creation of an acceptable ECG signal database are prerequisites for the analysis of electrocardiogram (ECG) signals. Identification and diagnosis of various cardiac illnesses depend heavily on the ECG segmentation and feature extraction procedure. Electrocardiogram (ECG) signals are frequently obtained for a variety of purposes, including the diagnosis of cardiovascular conditions, the identification of arrhythmias, the provision of physiological feedback, the detection of sleep apnea, routine patient monitoring, the prediction of sudden cardiac arrest, and the creation of systems for identifying vital signs, emotional states, and physical activities. The ECG has been widely used for the diagnosis and prognosis of a variety of heart diseases. Currently, a range of cardiac diseases can be accurately identified by computerized automated reports, which can then generate an automated report. This academic paper aims to provide an overview of the most important problems associated with using deep learning and machine learning to diagnose diseases based on electrocardiography, as well as a review of research on these techniques and methods and a discussion of the major data sets used by researchers.

Scopus Crossref
View Publication
Publication Date
Thu Jun 06 2024
Journal Name
Journal Of Applied Engineering And Technological Science (jaets)
Deep Learning and Its Role in Diagnosing Heart Diseases Based on Electrocardiography (ECG)
...Show More Authors

Diagnosing heart disease has become a very important topic for researchers specializing in artificial intelligence, because intelligence is involved in most diseases, especially after the Corona pandemic, which forced the world to turn to intelligence. Therefore, the basic idea in this research was to shed light on the diagnosis of heart diseases by relying on deep learning of a pre-trained model (Efficient b3) under the premise of using the electrical signals of the electrocardiogram and resample the signal in order to introduce it to the neural network with only trimming processing operations because it is an electrical signal whose parameters cannot be changed. The data set (China Physiological Signal Challenge -cspsc2018) was ad

... Show More
View Publication
Scopus Crossref
Publication Date
Sun Oct 15 2023
Journal Name
Journal Of Yarmouk
Artificial Intelligence Techniques for Colon Cancer Detection: A Review
...Show More Authors

Publication Date
Sun Oct 02 2011
Journal Name
Journal Of The Faculty Of Medicine Baghdad
The role of HSP60 in Atherosclerotic Coronary Heart disease
...Show More Authors

Background: Heat shock proteins have a general role in the response of the arterial wall to stress and may serve as a mediator/inducer of atherosclerosis in particular circumstances when HSPs specifically bind to the Toll-like receptor 4/CD14 complex, initiating an innate immune response, including the production of pro-inflammatory cytokines, this also followed by cytokine amplification through transmigration of macrophages and neutrophils.
Objective: To investigate the percentage of expression of HSP60 by peripheral blood lymphocyte (PBL) in atherosclerotic coronary heart disease (CHD) patients using immunocytochemistry technique.
Method: A total of fifty patient (40 males and 10 females), ranged from the mean age (59.12±8.54) y

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Thu Jun 23 2022
Journal Name
American Scientific Research Journal For Engineering, Technology, And Sciences
A Review of TCP Congestion Control Using Artificial Intelligence in 4G and 5G Networks
...Show More Authors

In recent years, the field of research around the congestion problem of 4G and 5G networks has grown, especially those based on artificial intelligence (AI). Although 4G with LTE is seen as a mature technology, there is a continuous improvement in the infrastructure that led to the emergence of 5G networks. As a result of the large services provided in industries, Internet of Things (IoT) applications and smart cities, which have a large amount of exchanged data, a large number of connected devices per area, and high data rates, have brought their own problems and challenges, especially the problem of congestion. In this context, artificial intelligence (AI) models can be considered as one of the main techniques that can be used to solve ne

... Show More
View Publication
Publication Date
Fri Dec 15 2023
Journal Name
Al-academy
The role of artificial intelligence in revolutionizing the clothing and textile industry
...Show More Authors

 The integration of AI technologies is revolutionizing various aspects of the apparel and textile industry, from design and manufacturing to customer experience and sustainability. Through the use of artificial intelligence algorithms, workers in the apparel and textile industry can take advantage of a wealth of opportunities for innovation, efficiency and creativity.
The research aims to display the enormous potential of artificial intelligence in the clothing and textile industry through published articles related to the title of the research using the Google Scholar search engine. The research contributes to the development of the cultural thought of researchers, designers, merchants and the consumer with the importance of integ

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sat Apr 02 2022
Journal Name
Journal Of Accounting And Financial Studies ( Jafs )
The Role of Artificial Intelligence in achieving Ambidextrous Performance A case study in a sample of private banks
...Show More Authors

The research aims to shed light on the role of artificial intelligence in achieving Ambidexterity performance, as banks work to take advantage of modern technologies, artificial intelligence is an innovation that is expected to have a long-term impact, as well as banks can improve the quality of their services and analyze data to ensure that customers' future needs are understood. . The Bank of Baghdad and the Middle East Bank were chosen as a community for the study because they had a role in the economic development of the country as well as their active role in the banking market. A sample of department managers was highlighted in collecting data and extracting results based on the checklist, which is the main tool for the stu

... Show More
View Publication Preview PDF
Publication Date
Sun Dec 31 2023
Journal Name
Sumer Journal For Pure Science
COVID-19Disease Diagnosis using Artificial Intelligence based on Gene Expression: A Review
...Show More Authors

Publication Date
Fri Mar 01 2024
Journal Name
Baghdad Science Journal
Exploring the Challenges of Diagnosing Thyroid Disease with Imbalanced Data and Machine Learning: A Systematic Literature Review
...Show More Authors

Thyroid disease is a common disease affecting millions worldwide. Early diagnosis and treatment of thyroid disease can help prevent more serious complications and improve long-term health outcomes. However, thyroid disease diagnosis can be challenging due to its variable symptoms and limited diagnostic tests. By processing enormous amounts of data and seeing trends that may not be immediately evident to human doctors, Machine Learning (ML) algorithms may be capable of increasing the accuracy with which thyroid disease is diagnosed. This study seeks to discover the most recent ML-based and data-driven developments and strategies for diagnosing thyroid disease while considering the challenges associated with imbalanced data in thyroid dise

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Thu Oct 22 2020
Journal Name
2020 4th International Symposium On Multidisciplinary Studies And Innovative Technologies (ismsit)
Artificial Intelligence in Smart Agriculture: Modified Evolutionary Optimization Approach for Plant Disease Identification
...Show More Authors

View Publication
Scopus (7)
Crossref (6)
Scopus Crossref
Publication Date
Sun Jan 01 2023
Journal Name
Dental Hypotheses
Revolutionizing Systematic Reviews and Meta-analyses: The Role of Artificial Intelligence in Evidence Synthesis
...Show More Authors

View Publication
Scopus (6)
Crossref (5)
Scopus Clarivate Crossref