The electrical activity of the heart and the electrocardiogram (ECG) signal are fundamentally related. In the study that has been published, the ECG signal has been examined and used for a number of applications. The monitoring of heart rate and the analysis of heart rhythm patterns, the detection and diagnosis of cardiac diseases, the identification of emotional states, and the use of biometric identification methods are a few examples of applications in the field. Several various phases may be involved in the analysis of electrocardiogram (ECG) data, depending on the type of study being done. Preprocessing, feature extraction, feature selection, feature modification, and classification are frequently included in these stages. Every stage must be finished in order for the analysis to go smoothly. Additionally, accurate success measures and the creation of an acceptable ECG signal database are prerequisites for the analysis of electrocardiogram (ECG) signals. Identification and diagnosis of various cardiac illnesses depend heavily on the ECG segmentation and feature extraction procedure. Electrocardiogram (ECG) signals are frequently obtained for a variety of purposes, including the diagnosis of cardiovascular conditions, the identification of arrhythmias, the provision of physiological feedback, the detection of sleep apnea, routine patient monitoring, the prediction of sudden cardiac arrest, and the creation of systems for identifying vital signs, emotional states, and physical activities. The ECG has been widely used for the diagnosis and prognosis of a variety of heart diseases. Currently, a range of cardiac diseases can be accurately identified by computerized automated reports, which can then generate an automated report. This academic paper aims to provide an overview of the most important problems associated with using deep learning and machine learning to diagnose diseases based on electrocardiography, as well as a review of research on these techniques and methods and a discussion of the major data sets used by researchers.
Planning of cities show great attention on streets planning as one of the most structural component foundations for cities, that providing many functional needs and connect parts of the city each other, and work as a commercial and services activities centers. Instead of this highly focused on distributing streets with different streets types such as economical and trading and housing streets. This concerned was only on the dimensions and scales of different types of vehicles and their movement. When scale and dimension and movement of mans were as a second priority in designing and planning streets. Which came's first for traditional streets. The research try to submit some designs guides for planners that contribute in re conce
... Show MoreThe research problem arose from the researchers’ sense of the importance of Digital Intelligence (DI), as it is a basic requirement to help students engage in the digital world and be disciplined in using technology and digital techniques, as students’ ideas are sufficiently susceptible to influence at this stage in light of modern technology. The research aims to determine the level of DI among university students using Artificial Intelligence (AI) techniques. To verify this, the researchers built a measure of DI. The measure in its final form consisted of (24) items distributed among (8) main skills, and the validity and reliability of the tool were confirmed. It was applied to a sample of 139 male and female students who were chosen
... Show MoreWomen with diabetes in pregnancy (type 1, type 2 and gestational) are at increased risk for adverse pregnancy outcomes which also include infant development of congenital heart disease and even fetal death. Adequate glycemic control before and during pregnancy is crucial to improve outcome
Renal function tests are commonly used in clinical practice to look for renal disease, the most common includes the serum urea, uric acid and creatinine. Heart failure patients have a higher incidence of renal function test abnormalities than individuals who do not have heart failure disease. Fifty subjects of adults (male) were divided in to two groups, 25 subjects (healthy) as control (group1) and 25 subjects with heart failure (group 2). Our results indicate that serum uric acid, urea, and creatinine values were significantly elevated (P≤0.05) in patients group (2) compared with healthy group (1). The results also showed, the effect of age categories on uric acid blood urea nitrogen and creatinine values (P≤0.05) and there were no si
... Show MoreBackground: The normal decline in systolic blood pressure during recovery phase of treadmill exercise dose not occur in most patients with coronary artery disease, in others recovery values systolic blood pressure may even exceed the peak exercise value. Objectives: Treadmill exercise test parameters indicating the presence and extent of coronary artery disease have traditionally included such as exercise duration, blood pressure and ST-segment response to exercise. The three –minute systolic blood pressure ratio is another important indicator of presence and significance of coronary artery disease is useful and obtainable measure that can be applied in all patients who are undergoing stress testing for evaluation of suspected is
... Show MoreBackground: Congenital cardiac defects have a wide spectrum of severity in infants. About 30-40% of patients with congenital cardiac defects will be symptomatic in the 1st year of life, while the diagnosis was established in 60% of patients by the 1st month of age.
Objectives: To identify the occurrence of specific types of CHD among hospitalized patients and to evaluate of growth of patients by different congenital heart lesions.
Methods: A retrospective study, done on ninety-six patients (51 male and 45 female) with congenital heart disease (CHD) admitted to central teaching hospital of pediatrics, Baghdad from 1st September 2009 to 30
This paper presents a robust algorithm for the assessment of risk priority for medical equipment based on the calculation of static and dynamic risk factors and Kohnen Self Organization Maps (SOM). Four risk parameters have been calculated for 345 medical devices in two general hospitals in Baghdad. Static risk factor components (equipment function and physical risk) and dynamics risk components (maintenance requirements and risk points) have been calculated. These risk components are used as an input to the unsupervised Kohonen self organization maps. The accuracy of the network was found to be equal to 98% for the proposed system. We conclude that the proposed model gives fast and accurate assessment for risk priority and it works as p
... Show More