This paper presents a combination of enhancement techniques for fingerprint images affected by different type of noise. These techniques were applied to improve image quality and come up with an acceptable image contrast. The proposed method included five different enhancement techniques: Normalization, Histogram Equalization, Binarization, Skeletonization and Fusion. The Normalization process standardized the pixel intensity which facilitated the processing of subsequent image enhancement stages. Subsequently, the Histogram Equalization technique increased the contrast of the images. Furthermore, the Binarization and Skeletonization techniques were implemented to differentiate between the ridge and valley structures and to obtain one pixel-wide lines. Finally, the Fusion technique was used to merge the results of the Histogram Equalization process with the Skeletonization process to obtain the new high contrast images. The proposed method was tested in different quality images from National Institute of Standard and Technology (NIST) special database 14. The experimental results are very encouraging and the current enhancement method appeared to be effective by improving different quality images.
Ultrasound imaging has some problems with image properties output. These affects the specialist decision. Ultrasound noise type is the speckle noise which has a grainy pattern depending on the signal. There are two parts of this study. The first part is the enhancing of images with adaptive Weiner, Lee, Gamma and Frost filters with 3x3, 5x5, and 7x7 sliding windows. The evaluated process was achieved using signal to noise ratio (SNR), peak signal to noise ratio (PSNR), mean square error (MSE), and maximum difference (MD) criteria. The second part consists of simulating noise in a standard image (Lina image) by adding different percentage of speckle noise from 0.01 to 0.06. The supervised classification based minimum di
... Show MoreIn information security, fingerprint verification is one of the most common recent approaches for verifying human identity through a distinctive pattern. The verification process works by comparing a pair of fingerprint templates and identifying the similarity/matching among them. Several research studies have utilized different techniques for the matching process such as fuzzy vault and image filtering approaches. Yet, these approaches are still suffering from the imprecise articulation of the biometrics’ interesting patterns. The emergence of deep learning architectures such as the Convolutional Neural Network (CNN) has been extensively used for image processing and object detection tasks and showed an outstanding performance compare
... Show MoreImage retrieval is used in searching for images from images database. In this paper, content – based image retrieval (CBIR) using four feature extraction techniques has been achieved. The four techniques are colored histogram features technique, properties features technique, gray level co- occurrence matrix (GLCM) statistical features technique and hybrid technique. The features are extracted from the data base images and query (test) images in order to find the similarity measure. The similarity-based matching is very important in CBIR, so, three types of similarity measure are used, normalized Mahalanobis distance, Euclidean distance and Manhattan distance. A comparison between them has been implemented. From the results, it is conclud
... Show MoreMedical image segmentation is one of the most actively studied fields in the past few decades, as the development of modern imaging modalities such as magnetic resonance imaging (MRI) and computed tomography (CT), physicians and technicians nowadays have to process the increasing number and size of medical images. Therefore, efficient and accurate computational segmentation algorithms become necessary to extract the desired information from these large data sets. Moreover, sophisticated segmentation algorithms can help the physicians delineate better the anatomical structures presented in the input images, enhance the accuracy of medical diagnosis and facilitate the best treatment planning. Many of the proposed algorithms could perform w
... Show MoreThis project aims to fabricate nanostructures (AgNPS) using the electrical exploding wire (EEW) technique using Rhodamine 6G dye as the probe molecule, investigate the effect of AgNPS on the absorption spectra and surface-enhanced Raman scattering (SERS) activities, and advance using porous silicon as an active substrate for surface-enhanced Raman scattering (SERS). X-Ray diffraction (XRD) was used to investigate the structural properties of the nanostructures (AgNPs). Field emission scanning electron microscopy (FE-SEM) was used to investigate surface morphology. A double beam UV-Vis Spectrophotometer was used to analyze the mixed R6G laser dye(of concentration 1x M) absorption spectra with the nanostructures AgNPS (of concentra
... Show MoreGray-Scale Image Brightness/Contrast Enhancement with Multi-Model
Histogram linear Contrast Stretching (MMHLCS) method
Ebastine (EBS) is a non-sedating antihistamine with a long duration of action. This drug has predominantly hydrophobic property causing a low solubility and low bioavailability. Surface solid dispersions (SSD) is an effective technique for improving the solubility and dissolution rate of poorly soluble drugs by using hydrophilic water insoluble carriers.
The present study aims to enhance the solubility and dissolution rate of EBS by using surface solid dispersion technique. Avicel® PH101, Avicel® PH 102, croscarmellose sodium(CCS) and sodium starch glycolate(SSG) were used as water insoluble hydrophilic carriers.
The SSD formulations of EBS were prepared by the solvent evaporation method in different drug: carrier
... Show MoreDisease diagnosis with computer-aided methods has been extensively studied and applied in diagnosing and monitoring of several chronic diseases. Early detection and risk assessment of breast diseases based on clinical data is helpful for doctors to make early diagnosis and monitor the disease progression. The purpose of this study is to exploit the Convolutional Neural Network (CNN) in discriminating breast MRI scans into pathological and healthy. In this study, a fully automated and efficient deep features extraction algorithm that exploits the spatial information obtained from both T2W-TSE and STIR MRI sequences to discriminate between pathological and healthy breast MRI scans. The breast MRI scans are preprocessed prior to the feature
... Show More