The electrocoagulation process became one of the most important technologies used for water treatment processes in the last few years. It’s the preferred method to remove suspended solids and heavy metals from water for treating drinking water and wastewater from textile, diary, and electroplating factories. This research aims to study the effect of using the electrocoagulation process with aluminum electrodes on the removal efficiency of suspended solids and turbidity presented in raw water and optimizing by the response surface methodology (RSM). The most important variables studied in this research included electrode spacing, the applied voltage, and the operating time of the electrocoagulation process. The samples
... Show MoreThis paper proposes a collaborative system called Recycle Rewarding System (RRS), and focuses on the aspect of using information communication technology (ICT) as a tool to promote greening. The idea behind RRS is to encourage recycling collectors by paying them for earning points. In doing so, both the industries and individuals reap the economical benefits of such system. Finally, and more importantly, the system intends to achieve a green environment for the Earth. This paper discusses the design and implementation of the RRS, involves: the architectural design, selection of components, and implementation issues. Five modules are used to construct the system, namely: database, data entry, points collecting and recording, points reward
... Show MoreThis paper was aimed to study the efficiency of forward osmosis (FO) process as a new application for the treatment of wastewater from textile effluent and the factors affecting the performance of forward osmosis process.
The draw solutions used were magnesium chloride (MgCl2), and aluminum sulphate (Al2 ( SO4)3 .18 H2O), and the feed solutions used were reactive red, and disperse blue dyes.
Experimental work were includes operating the forward osmosis process using thin film composite (TFC) membrane as flat sheet for different draw solutions and feed solutions. The operating parameters studied were : draw solutions concentration (10 – 90 g/l), feed solutions concentration (5 – 30 mg/l), draw solutions flow rate (10 – 50 l/hr
Production of fatty acid esters (biodiesel) from oleic acid and 2-ethylhexanol using sulfated zirconia as solid catalyst for the production of biodiesel was investigated in this work.
The parameters studied were temperature of reaction (100 to 130°C), molar ratio of alcohol to free fatty acid (1:1 to 3:1), concentration of catalyst (0.5 to 3%wt), mixing speed (500 to 900 rpm) and types of sulfated zirconia (i.e modified, commercial, prepared catalyst according to literature and reused catalyst). The results show the best conversion to biodiesel was 97.74% at conditions of 130°C, 3:1, 2wt% and 650 rpm using modified catalyst respectively. Also, modified c
... Show MoreThe clayey soils have the capability to swell and shrink with the variation in moisture content. Soil stabilization is a well-known technique, which is implemented to improve the geotechnical properties of soils. The massive quantities of waste materials are resulting from modern industry methods create disposal hazards in addition to environmental problems. The steel industry has a waste that can be used with low strength and weak engineering properties soils. This study is carried out to evaluate the effect of steel slag (SS) as a by-product of the geotechnical properties of clayey soil. A series of laboratory tests were conducted on natural and stabilized soils. SS was added by 0, 2.5, 5, 10, 15, and 20% to the soil.
... Show MoreSoftware-defined networking (SDN) presents novel security and privacy risks, including distributed denial-of-service (DDoS) attacks. In response to these threats, machine learning (ML) and deep learning (DL) have emerged as effective approaches for quickly identifying and mitigating anomalies. To this end, this research employs various classification methods, including support vector machines (SVMs), K-nearest neighbors (KNNs), decision trees (DTs), multiple layer perceptron (MLP), and convolutional neural networks (CNNs), and compares their performance. CNN exhibits the highest train accuracy at 97.808%, yet the lowest prediction accuracy at 90.08%. In contrast, SVM demonstrates the highest prediction accuracy of 95.5%. As such, an
... Show MoreAn intrusion detection system (IDS) is key to having a comprehensive cybersecurity solution against any attack, and artificial intelligence techniques have been combined with all the features of the IoT to improve security. In response to this, in this research, an IDS technique driven by a modified random forest algorithm has been formulated to improve the system for IoT. To this end, the target is made as one-hot encoding, bootstrapping with less redundancy, adding a hybrid features selection method into the random forest algorithm, and modifying the ranking stage in the random forest algorithm. Furthermore, three datasets have been used in this research, IoTID20, UNSW-NB15, and IoT-23. The results are compared with the three datasets men
... Show MoreSemantic segmentation is an exciting research topic in medical image analysis because it aims to detect objects in medical images. In recent years, approaches based on deep learning have shown a more reliable performance than traditional approaches in medical image segmentation. The U-Net network is one of the most successful end-to-end convolutional neural networks (CNNs) presented for medical image segmentation. This paper proposes a multiscale Residual Dilated convolution neural network (MSRD-UNet) based on U-Net. MSRD-UNet replaced the traditional convolution block with a novel deeper block that fuses multi-layer features using dilated and residual convolution. In addition, the squeeze and execution attention mechanism (SE) and the s
... Show MorePathology reports are necessary for specialists to make an appropriate diagnosis of diseases in general and blood diseases in particular. Therefore, specialists check blood cells and other blood details. Thus, to diagnose a disease, specialists must analyze the factors of the patient’s blood and medical history. Generally, doctors have tended to use intelligent agents to help them with CBC analysis. However, these agents need analytical tools to extract the parameters (CBC parameters) employed in the prediction of the development of life-threatening bacteremia and offer prognostic data. Therefore, this paper proposes an enhancement to the Rabin–Karp algorithm and then mixes it with the fuzzy ratio to make this algorithm suitable
... Show More