The fuzzy assignment models (FAMs) have been explored by various literature to access classical values, which are more precise in our real-life accomplishment. The novelty of this paper contributed positively to a unique application of pentagonal fuzzy numbers for the evaluation of FAMs. The new method namely Pascal's triangle graded mean (PT-GM) has presented a new algorithm in accessing the critical path to solve the assignment problems (AP) based on the fuzzy objective function of minimising total cost. The results obtained have been compared to the existing methods such as, the centroid formula (CF) and centroid formula integration (CFI). It has been demonstrated that operational efficiency of this conducted method is exquisitely developing an optimal solution (Opt. Sol.) depending on the corresponding path by the new tender algorithm.
Malware represents one of the dangerous threats to computer security. Dynamic analysis has difficulties in detecting unknown malware. This paper developed an integrated multi – layer detection approach to provide more accuracy in detecting malware. User interface integrated with Virus Total was designed as a first layer which represented a warning system for malware infection, Malware data base within malware samples as a second layer, Cuckoo as a third layer, Bull guard as a fourth layer and IDA pro as a fifth layer. The results showed that the use of fifth layers was better than the use of a single detector without merging. For example, the efficiency of the proposed approach is 100% compared with 18% and 63% of Virus Total and Bel
... Show MoreIn this paper , an efficient new procedure is proposed to modify third –order iterative method obtained by Rostom and Fuad [Saeed. R. K. and Khthr. F.W. New third –order iterative method for solving nonlinear equations. J. Appl. Sci .7(2011): 916-921] , using three steps based on Newton equation , finite difference method and linear interpolation. Analysis of convergence is given to show the efficiency and the performance of the new method for solving nonlinear equations. The efficiency of the new method is demonstrated by numerical examples.
Due to its importance in physics and applied mathematics, the non-linear Sturm-Liouville problems
witnessed massive attention since 1960. A powerful Mathematical technique called the Newton-Kantorovich
method is applied in this work to one of the non-linear Sturm-Liouville problems. To the best of the authors’
knowledge, this technique of Newton-Kantorovich has never been applied before to solve the non-linear
Sturm-Liouville problems under consideration. Accordingly, the purpose of this work is to show that this
important specific kind of non-linear Sturm-Liouville differential equations problems can be solved by
applying the well-known Newton-Kantorovich method. Also, to show the efficiency of appl
This paper investigates some exact and local search methods to solve the traveling salesman problem. The Branch and Bound technique (BABT) is proposed, as an exact method, with two models. In addition, the classical Genetic Algorithm (GA) and Simulated Annealing (SA) are discussed and applied as local search methods. To improve the performance of GA we propose two kinds of improvements for GA; the first is called improved GA (IGA) and the second is Hybrid GA (HGA).
The IGA gives best results than GA and SA, while the HGA is the best local search method for all within a reasonable time for 5 ≤ n ≤ 2000, where n is the number of visited cities. An effective method of reducing the size of the TSP matrix was proposed with
... Show MoreThis paper presents new modification of HPM to solve system of 3 rd order PDEs with initial condition, for finding suitable accurate solutions in a wider domain.
This paper focuses on developing a self-starting numerical approach that can be used for direct integration of higher-order initial value problems of Ordinary Differential Equations. The method is derived from power series approximation with the resulting equations discretized at the selected grid and off-grid points. The method is applied in a block-by-block approach as a numerical integrator of higher-order initial value problems. The basic properties of the block method are investigated to authenticate its performance and then implemented with some tested experiments to validate the accuracy and convergence of the method.
This paper has the interest of finding the approximate solution (APPS) of a nonlinear variable coefficients hyperbolic boundary value problem (NOLVCHBVP). The given boundary value problem is written in its discrete weak form (WEFM) and proved have a unique solution, which is obtained via the mixed Galerkin finite element with implicit method that reduces the problem to solve the Galerkin nonlinear algebraic system (GNAS). In this part, the predictor and the corrector techniques (PT and CT, respectively) are proved at first convergence and then are used to transform the obtained GNAS to a linear GLAS . Then the GLAS is solved using the Cholesky method (ChMe). The stability and the convergence of the method are stud
... Show MoreInventory or inventories are stocks of goods being held for future use or sale. The demand for a product in is the number of units that will need to be removed from inventory for use or sale during a specific period. If the demand for future periods can be predicted with considerable precision, it will be reasonable to use an inventory rule that assumes that all predictions will always be completely accurate. This is the case where we say that demand is deterministic.
The timing of an order can be periodic (placing an order every days) or perpetual (placing an order whenever the inventory declines to units).
in this research we discuss how to formulating inv
... Show More