Preferred Language
Articles
/
joe-2025
Skull Stripping Based on the Segmentation Models
...Show More Authors

Skull image separation is one of the initial procedures used to detect brain abnormalities. In an MRI image of the brain, this process involves distinguishing the tissue that makes up the brain from the tissue that does not make up the brain. Even for experienced radiologists, separating the brain from the skull is a difficult task, and the accuracy of the results can vary quite a little from one individual to the next. Therefore, skull stripping in brain magnetic resonance volume has become increasingly popular due to the requirement for a dependable, accurate, and thorough method for processing brain datasets. Furthermore, skull stripping must be performed accurately for neuroimaging diagnostic systems since neither non-brain tissues nor the removal of brain sections can be addressed in the subsequent steps, resulting in an unfixed mistake during further analysis. Therefore, accurate skull stripping is necessary for neuroimaging diagnostic systems. This paper proposes a system based on deep learning and Image processing, an innovative method for converting a pre-trained model into another type of pre-trainer using pre-processing operations and the CLAHE filter as a critical phase. The global IBSR data set was used as a test and training set. For the system's efficacy, work was performed based on the principle of three dimensions and three sections of MR images and two-dimensional images, and the results were 99.9% accurate.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Mon Oct 02 2023
Journal Name
Journal Of Engineering
Skull Stripping Based on the Segmentation Models
...Show More Authors

Skull image separation is one of the initial procedures used to detect brain abnormalities. In an MRI image of the brain, this process involves distinguishing the tissue that makes up the brain from the tissue that does not make up the brain. Even for experienced radiologists, separating the brain from the skull is a difficult task, and the accuracy of the results can vary quite a little from one individual to the next. Therefore, skull stripping in brain magnetic resonance volume has become increasingly popular due to the requirement for a dependable, accurate, and thorough method for processing brain datasets. Furthermore, skull stripping must be performed accurately for neuroimaging diagnostic systems since neither non-brain tissues nor

... Show More
Publication Date
Tue Apr 30 2024
Journal Name
International Journal On Technical And Physical Problems Of Engineering
Deep Learning Techniques For Skull Stripping of Brain MR Images
...Show More Authors

Deep Learning Techniques For Skull Stripping of Brain MR Images

Scopus
Publication Date
Fri Jun 20 2014
Journal Name
Jurnal Teknologi
A Review of Snake Models in Medical MR Image Segmentation
...Show More Authors

Developing an efficient algorithm for automated Magnetic Resonance Imaging (MRI) segmentation to characterize tumor abnormalities in an accurate and reproducible manner is ever demanding. This paper presents an overview of the recent development and challenges of the energy minimizing active contour segmentation model called snake for the MRI. This model is successfully used in contour detection for object recognition, computer vision and graphics as well as biomedical image processing including X-ray, MRI and Ultrasound images. Snakes being deformable well-defined curves in the image domain can move under the influence of internal forces and external forces are subsequently derived from the image data. We underscore a critical appraisal

... Show More
Scopus (10)
Scopus
Publication Date
Wed Jan 01 2020
Journal Name
Ieee Access
Fast Temporal Video Segmentation Based on Krawtchouk-Tchebichef Moments
...Show More Authors

View Publication
Scopus (37)
Crossref (39)
Scopus Clarivate Crossref
Publication Date
Thu Mar 09 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Images Segmentation Based on Fast Otsu Method Implementing on Various Edge Detection Operators
...Show More Authors

The present work aims to study the effect of using an automatic thresholding technique to convert the features edges of the images to binary images in order to split the object from its background, where the features edges of the sampled images obtained from first-order edge detection operators (Roberts, Prewitt and Sobel) and second-order edge detection operators (Laplacian operators). The optimum automatic threshold are calculated using fast Otsu method. The study is applied on a personal image (Roben) and a satellite image to study the compatibility of this procedure with two different kinds of images. The obtained results are discussed.

View Publication Preview PDF
Publication Date
Mon Feb 07 2022
Journal Name
Cogent Engineering
A partial image encryption scheme based on DWT and texture segmentation
...Show More Authors

View Publication
Scopus (6)
Crossref (5)
Scopus Clarivate Crossref
Publication Date
Sat Nov 02 2013
Journal Name
Ibn Al-haitham Journal For Pure And Applied Science
Images Segmentation Based on Fast Otsu Method Implementing on Various Edge Detection Operators
...Show More Authors

Publication Date
Wed Mar 30 2022
Journal Name
Iraqi Journal Of Science
A Review on E-Voting Based on Blockchain Models
...Show More Authors

    Developing a solid e-voting system that offers fairness and privacy for users is a challenging objective. This paper is trying to address whether blockchain can be used to build an efficient e-voting system, also, this research has specified four blockchain technologies with their features and limitations. Many papers have been reviewed in a study covered ten years from 2011 to 2020. As a result of the study, the blockchain platform can be a successful public ledger to implement an e-voting system. Four blockchain technologies have been noticed from this study. These are blockchain using smart contracts, blockchain relying on Zcash platform, blockchain programmed from scratch, and blockchain depending on digital signature. Each bl

... Show More
View Publication Preview PDF
Scopus (7)
Crossref (2)
Scopus Crossref
Publication Date
Thu Jan 14 2021
Journal Name
Iraqi Journal Of Science
Identifying Digital Forensic Frameworks Based on Processes Models
...Show More Authors

Digital forensic is part of forensic science that implicitly covers crime related to computer and other digital devices. It‟s being for a while that academic studies are interested in digital forensics. The researchers aim to find out a discipline based on scientific structures that defines a model reflecting their observations. This paper suggests a model to improve the whole investigation process and obtaining an accurate and complete evidence and adopts securing the digital evidence by cryptography algorithms presenting a reliable evidence in a court of law. This paper presents the main and basic concepts of the frameworks and models used in digital forensics investigation.

View Publication Preview PDF
Scopus (5)
Crossref (3)
Scopus Crossref
Publication Date
Sun Jul 02 2023
Journal Name
Iraqi Journal Of Science
Image Segmentation Using Superpixel Based Split and Merge Method
...Show More Authors

A super pixel can be defined as a group of pixels, which have similar characteristics, which can be very helpful for image segmentation. It is generally color based segmentation as well as other features like texture, statistics…etc .There are many algorithms available to segment super pixels like Simple Linear Iterative Clustering (SLIC) super pixels and Density-Based Spatial Clustering of Application with Noise (DBSCAN). SLIC algorithm essentially relay on choosing N random or regular seeds points covering the used image for segmentation. In this paper Split and Merge algorithm was used instead to overcome determination the seed point's location and numbers as well as other used parameters. The overall results were better from the SL

... Show More
View Publication Preview PDF